Project description:RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.
Project description:X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.
Project description:Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8?Å and 2.4?Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
Project description:Here a direct comparison is made between various X-ray wavefront sensing methods with application to optics alignment and focus characterization at X-ray free-electron lasers (XFELs). Focus optimization at XFEL beamlines presents unique challenges due to high peak powers as well as beam pointing instability, meaning that techniques capable of single-shot measurement and that probe the wavefront at an out-of-focus location are desirable. The techniques chosen for the comparison include single-phase-grating Talbot interferometry (shearing interferometry), dual-grating Talbot interferometry (moiré deflectometry) and speckle tracking. All three methods were implemented during a single beam time at the Linac Coherent Light Source, at the X-ray Pump Probe beamline, in order to make a direct comparison. Each method was used to characterize the wavefront resulting from a stack of beryllium compound refractive lenses followed by a corrective phase plate. In addition, difference wavefront measurements with and without the phase plate agreed with its design to within λ/20, which enabled a direct quantitative comparison between methods. Finally, a path toward automated alignment at XFEL beamlines using a wavefront sensor to close the loop is presented.
Project description:X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method for studying electronic and structural properties of matter. At first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of X-ray Free Electron Lasers (XFEL) sources seem to require accumulation over many shots to achieve high data quality. To date the best approach to implementing XAS at XFEL facilities has been using monochromators to scan the photon energy across the desired spectral range. While this is possible for easily reproducible samples such as liquids, it is incompatible with many important systems. Here, we demonstrate collection of single-shot XAS spectra over 10s of eV using an XFEL source, with error bars of only a few percent. We additionally show how to extend this technique over wider spectral ranges towards Extended X-ray Absorption Fine Structure measurements, by concatenating a few tens of single-shot measurements. Our results pave the way for future XAS studies at XFELs, in particular those in the femtosecond regime. This advance is envisioned to be especially important for many transient processes that can only be initiated at lower repetition rates, for difficult to reproduce excitation conditions, or for rare samples, such as those encountered in high-energy density physics.
Project description:The emerging method of femtosecond crystallography (FX) may extend the diffraction resolution accessible from small radiation-sensitive crystals and provides a means to determine catalytically accurate structures of acutely radiation-sensitive metalloenzymes. Automated goniometer-based instrumentation developed for use at the Linac Coherent Light Source enabled efficient and flexible FX experiments to be performed on a variety of sample types. In the case of rod-shaped Cpl hydrogenase crystals, only five crystals and about 30 min of beam time were used to obtain the 125 still diffraction patterns used to produce a 1.6-Å resolution electron density map. For smaller crystals, high-density grids were used to increase sample throughput; 930 myoglobin crystals mounted at random orientation inside 32 grids were exposed, demonstrating the utility of this approach. Screening results from cryocooled crystals of β2-adrenoreceptor and an RNA polymerase II complex indicate the potential to extend the diffraction resolution obtainable from very radiation-sensitive samples beyond that possible with undulator-based synchrotron sources.
Project description:The prospect of single particle imaging with atomic resolution is one of the scientific drivers for the development of X-ray free-electron lasers. The assumption since the beginning has been that damage to the sample caused by intense X-ray pulses is one of the limiting factors for achieving subnanometer X-ray imaging of single particles and that X-ray pulses need to be as short as possible. Based on the molecular dynamics simulations of proteins in X-ray fields of various durations (5 fs, 25 fs, and 50 fs), we show that the noise in the diffracted signal caused by radiation damage is less than what can be expected from other sources, such as sample inhomogeneity and X-ray shot-to-shot variations. These findings show a different aspect of the feasibility of high-resolution single particle imaging using free-electron lasers, where employing X-ray pulses of longer durations could still provide a useful diffraction signal above the noise due to the Coulomb explosion.
Project description:Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.
Project description:HIV-1 integrase (HIV-1 IN) is an enzyme produced by the HIV-1 virus that integrates genetic material of the virus into the DNA of infected human cells. HIV-1 IN acts as a key component of the Retroviral Pre-Integration Complex (PIC). Protein dynamics could play an important role during the catalysis of HIV-1 IN; however, this process has not yet been fully elucidated. X-ray free electron laser (XFEL) together with nuclear magnetic resonance (NMR) could provide information regarding the dynamics during this catalysis reaction. Here, we report the non-cryogenic crystal structure of HIV-1 IN catalytic core domain at 2.5 Å using microcrystals in XFELs. Compared to the cryogenic structure at 2.1 Å using conventional synchrotron crystallography, there was a good agreement between the two structures, except for a catalytic triad formed by Asp64, Asp116, and Glu152 (DDE) and the lens epithelium-derived growth factor binding sites. The helix III region of the 140-153 residues near the active site and the DDE triad show a higher dynamic profile in the non-cryogenic structure, which is comparable to dynamics data obtained from NMR spectroscopy in solution state.
Project description:Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.