Project description:Despite extensive studies conducted on the relationship between serum uric acid (UA) and bone mineral density (BMD), their association remains controversial. In this study, we investigated whether UA levels are independently associated with BMD in Chinese and American populations to elucidate their association. Herein, the data of 12,344 individuals (age > 20 years) from the National Health and Nutrition Examination Survey (2005-2018) and those of 768 individuals from the inpatient medical records and physical examination center systems of the Tertiary Class A Hospital (2021-2023) from China were included. The association between UA and BMD was analyzed by employing multivariate regression models with covariate adjustments. In addition, population description, stratified analysis, single-factor analysis, smooth-curve fitting, and threshold and saturation effect analyses were performed. After covariate adjustments, UA exhibited an association with BMD of the femur (β = 0.008, 95% confidence interval [CI] 0.001-0.015, P = 0.02), femoral neck (β = 0.011, 95% CI 0.004-0.018, P = 0.002), and lumbar spine (β = 0.014, 95% CI 0.06-0.022, P < 0.001) in American subjects. Similarly, UA exhibited association with BMD of the femur (β = 0.079, 95% CI 0.042-0.117, P < 0.001), femoral neck (β = 0.171, 95% CI 0.121-0.22, P < 0.001), and lumbar spine (β = 0.052, 95% CI 0.007-0.097, P = 0.024) in Chinese subjects. Notably, the relationship between UA levels and BMD was nonlinear. The saturated utility values for determining the UA level with BMD of the femur and femoral neck using a two-stage linear regression model were 429.9 and 468 μmol/L, respectively, in the Chinese population. In the American population, the saturated utility values of UA level with BMD of the femur, femoral neck, and lumbar spine were 410.4, 410.4, and 452 μmol/L, respectively. Altogether, the present findings suggested a positive association between the UA levels and overall BMD in adults, implying that maintaining saturated UA levels can facilitate osteoporosis prevention.China Clinical Trials Registry: MR-51-23-051741. https://www.medicalresearch.org.cn/search/research/researchViewid=c0e5f868-eca9-4c68-af58-d73460c34028 .
Project description:BackgroundBone mineral density is an important indicator of osteoporosis, and its variation with volatile organic compounds exposure has rarely been studied. However, the relationship between chloroform (an essential volatile organic compounds component) and bone mineral density remains unclear. Consequently, we aimed to explore the relationship between chloroform alone and bone mineral density or bone mineral content.MethodsHerein, 2,553 individuals aged 18 and above from the National Health and Nutrition Examination Surveys (NHANES) in 2009-2010, 2013-2014, and 2017-2020, were included. We employed two independent t-tests and multi-linear regression models to statistically assess the relationship between chloroform exposure and BMD/BMC in the spine and femoral area.ResultsA "V"-shaped correlation between chloroform exposure and bone mineral density or bone mineral content (BMD/BMC) was observed in the unadjusted model, particularly in the Ward's triangle and femoral neck as a whole. A negative correlation was specifically observed for the Ward's triangle BMD/BMC and L4 BMD/BMC. On the other hand, in the adjusted model, a dominantly negative correlation between the L4 BMC and chloroform exposure was observed over a range of exposure levels. The subgroup analysis revealed a negative correlation between chloroform concentrations and BMC in the femur and spine, especially in women and the 65-80 age population.ConclusionOur study revealed a "V" shaped correlation between chloroform and BMD/BMC of the femur and spine in U.S. adults. This finding highlights the fact that prolonged exposure to chloroform may cause the changes in BMD/BMC.
Project description:Health-related physical fitness (HRPF) attributes are considered important markers beneficial to various health outcomes. However, the literature is divergent regarding HRPF and bone health in adulthood, especially due to the end of the second and beginning of the third decades of life when the peak bone mass period occurs. To analyze which HRPF variables are areal bone mineral density (aBMD) predictors in adult males and females. This study evaluated 137 healthy young adults aged 18-25 years (50% males). Dual-energy X-ray absorptiometry (DXA) was used to estimate fat mass and lean mass and aBMD, hand grip strength test, sit-ups test, flexibility test, lower limb muscle strength and 20-meter run were used to evaluate physical fitness. Multiple linear regression using the backward method was used to analyze bone mineral density predictors by sex. HRPF indicators showed correlations from R = 0.28 in the right femoral neck aBMD to R = 0.61 in the upper limbs aBMD in males; in females, correlations from R = 0.27 in total body aBMD to R = 0.68 in the lower limbs aBMD were found. In males, body mass and HRPF indicators were aBMD predictors with HRPF indicators explaining variance from R²=0.214 in the lumbar spine to R²=0.497 in the upper limbs, and in females, with the exception of the lumbar spine, variance from R²=0.237 in the right femoral neck aBMD to R²=0.442 in the lower limbs aBMD was found. Health-related physical fitness components were able to predict aBMD in different anatomical regions in young adults, especially muscle strength and cardiorespiratory fitness indicators for males, while only lean mass and fat mass for females.
Project description:PurposeIt has been reported that bone is the primary organ for manganese (Mn) accumulation, but the association between manganese and bone loss remains debatable. Therefore, this study aimed to evaluate the relationship between blood manganese and bone mineral density/bone mineral content (BMD/BMC) by using a representative sample from the National Health and Nutrition Examination Survey (NHANES).MethodsA total of 9732 subjects over the age of 18 with available data were enrolled in this study. The relationship between blood manganese and BMD/BMC of the total body, spine and femoral regions was evaluated using multivariate linear regression models. Subgroup analyses were also performed.ResultsWe observed a negative association between blood manganese and BMD/BMC in the femoral neck and total body in the fully adjusted model, especially femoral neck BMD in women aged 50-70 years.ConclusionIn brief, people exposed to manganese should be aware of the increased risk of osteopenia or osteoporosis. Besides, due to the lack of available data, there are no definite values for the tolerable upper intake level (UL), average requirement (AR) and population reference intake (PRI) of manganese. The results of our study may provide some references for the establishment of AR, PRI and UL of Mn.
Project description:BackgroundOsteoporosis is a major health concern for both men and women, and associated fractures incur substantial economic burden. While there are a multitude of studies on bone mineral density (BMD) and liver diseases, not many studies have assessed the association between liver enzyme levels and BMD in homogeneous populations.MethodsThe current study investigated the association between serum liver enzyme levels and BMD at various sites in Koreans. Out of 21,517 surveyees of the 5th Korean National Health and Nutrition Examination Survey (2010-2012), 7160 participants' data on BMD, serum liver enzymes, and full covariate data were included for cross-sectional analysis. BMD at the femoral neck, lumbar spine, entire femur, and whole body was assessed using dual energy X-ray absorptiometry (DEXA), and liver enzymes included aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma(γ)-glutamyl transferase (GGT) levels. Differences in participant characteristics by BMD and liver enzyme levels were analyzed, and complex sample design regression analysis adjusted for multiple covariates was performed to assess the relationship between liver enzymes and BMD.ResultsNegative associations were seen with GGT and BMD at all sites (P ≤ 0.02), ALT with lumbar spine (P = 0.0013), and AST with lumbar BMD (P = 0.0009). In particular, GGT presented strong negative associations with BMD in postmenopausal women and elder men.ConclusionsThis study demonstrates a negative relationship between liver enzyme levels and BMD, and suggests that a significant association exists between osteoporosis/decreased BMD and liver disorders.
Project description:ContextRecent studies have shown that β-blocker (BB) users have a decreased risk of fracture and higher bone mineral density (BMD) compared to nonusers, likely due to the suppression of adrenergic signaling in osteoblasts, leading to increased BMD. There is also variability in the effect size of BB use on BMD in humans, which may be due to pharmacogenomic effects.ObjectiveTo investigate potential single-nucleotide variations (SNVs) associated with the effect of BB use on femoral neck BMD, we performed a cross-sectional analysis using clinical data, dual-energy x-ray absorptiometry, and genetic data from the Framingham Heart Study's (FHS) Offspring Cohort. We then sought to validate our top 4 genetic findings using data from the Rotterdam Study, the BPROOF Study, the Malta Osteoporosis Fracture Study (MOFS), and the Hertfordshire Cohort Study.MethodsWe used sex-stratified linear mixed models to determine SNVs that had a significant interaction effect with BB use on femoral neck (FN) BMD across 11 gene regions. We also evaluated the association of our top SNVs from the FHS with microRNA (miRNA) expression in blood and identified potential miRNA-mediated mechanisms by which these SNVs may affect FN BMD.ResultsOne variation (rs11124190 in HDAC4) was validated in females using data from the Rotterdam Study, while another (rs12414657 in ADRB1) was validated in females using data from the MOFS. We performed an exploratory meta-analysis of all 5 studies for these variations, which further validated our findings.ConclusionThis analysis provides a starting point for investigating the pharmacogenomic effects of BB use on BMD measures.
Project description:BackgroundGenome-wide association studies (GWASs) routinely identify loci associated with risk factors for osteoporosis. However, GWASs with relatively small sample sizes still lack sufficient power to ascertain the majority of genetic variants with small to modest effect size, which may together truly influence the phenotype. The loci identified only account for a small percentage of the heritability of osteoporosis. This study aims to identify novel genetic loci associated with DXA-derived femoral neck (FNK) bone mineral density (BMD) and quantitative ultrasound of the heel calcaneus estimated BMD (eBMD), and to detect shared/causal variants for the two traits, to assess whether the SNPs or putative causal SNPs associated with eBMD were also associated with FNK-BMD.MethodsNovel loci associated with eBMD and FNK-BMD were identified by the genetic pleiotropic conditional false discovery rate (cFDR) method. Shared putative causal variants between eBMD and FNK-BMD and putative causal SNPs for each trait were identified by the colocalization method. Mendelian randomization analysis addresses the causal relationship between eBMD/FNK-BMD and fracture.ResultsWe identified 9,500 (cFDR < 9.8E-6), 137 (cFDR < 8.9E-4) and 124 SNPs associated with eBMD, FNK-BMD, and both eBMD and FNK-BMD, respectively, with 37 genomic regions where there was a SNP that influences both eBMD and FNK-BMD. Most genomic regions only contained putative causal SNPs associated with eBMD and 3 regions contained two distinct putative causal SNPs influenced both traits, respectively. We demonstrated a causal effect of FNK-BMD/eBMD on fracture.ConclusionMost of SNPs or putative causal SNPs associated with FNK-BMD were also associated with eBMD. However, most of SNPs or putative causal SNPs associated with eBMD were not associated with FNK-BMD. The novel variants we identified may help to account for the additional proportion of variance of each trait and advance our understanding of the genetic mechanisms underlying osteoporotic fracture.
Project description:BackgroundThe association between lipid and bone metabolism, particularly the role of high-density lipoprotein cholesterol (HDL-C) in regulating bone mineral density (BMD), is of significant interest. Despite numerous studies, findings on this relationship remain inconclusive, especially since evidence from large, sexually diverse Chinese populations is sparse. This study, therefore, investigates the correlation between HDL-C and lumbar BMD in people of different genders using extensive population-based data from physical examinations conducted in China.MethodsData from a cross-sectional survey involving 20,351 individuals aged > = 20 years drawn from medical records of health check-ups at the Health Management Centre of the Henan Provincial People's Hospital formed the basis of this study. The primary objective was to determine the correlation between HDL-C levels and lumbar BMD across genders. The analysis methodology included demographic data analysis, one-way ANOVA, subgroup analyses, multifactorial regression equations, smoothed curve fitting, and threshold and saturation effect analyses.ResultsMultifactorial regression analysis revealed a significant inverse relationship between HDL-C levels and lumbar BMD in both sexes, controlling for potential confounders (Male: β = -8.77, 95% CI -11.65 to -5.88, P < 0.001; Female: β = -4.77, 95% CI -8.63 to -0.90, P = 0.015). Subgroup and threshold saturation effect analyses indicated a stronger association in males, showing that increased HDL-C correlates with reduced lumbar BMD irrespective of age and body mass index (BMI). The most significant effect was observed in males with BMI > 28 kg/m2 and HDL-C > 1.45 mmol/L and in females with a BMI between 24 and 28 kg/m2.ConclusionElevated HDL-C is associated with decreased bone mass, particularly in obese males. These findings indicate that individuals with high HDL-C levels should receive careful clinical monitoring to mitigate osteoporosis risk.Trial registrationThe research protocol received ethics approval from the Ethics Committee at Beijing Jishuitan Hospital, in conformity with the Declaration of Helsinki guidelines (No. 2015-12-02). These data are a contribution of the China Health Quantitative CT Big Data Research team, registered at clinicaltrials.gov (code: NCT03699228).
Project description:The purpose of the study was to determine whether running is associated with greater bone mineral density (BMD) by comparing the BMD of regularly active male runners (AR) with inactive nonrunner male controls (INC). This cross-sectional study recruited 327 male AR and 212 male INC (aged 18-65) via a stratified recruitment strategy. BMD of the whole body (WB) and partial segments (spine, lumbar spine (LS), leg, hip, femoral neck (FN), and arm for each side) were measured by dual-energy x-ray absorptiometry (DXA) and lower leg dominance (dominant-D/nondominant-ND) was established by functional testing. An ANCOVA was used to compare AR and INC. The AR had greater BMD for all segments of the lower limb (p<0.05), but similar BMD for all segments of the upper limb (p>0.05) compared with INC. Based on the pairwise comparison of age groups, AR had greater BMD of the ND leg in every age group compared with INC (p<0.05). AR had grater BMD of the D leg in every age group except for (26-35 and 56-65) compare with INC (p<0.05). In the youngest age group (18-25), AR had greater BMD in every measured part of lower extremities (legs, hips, femoral necks) compared with INC (p<0.05). In the 46-55 age group AR had greater BMD than INC (p < 0.05) only in the WB, D Leg, D neck, and ND leg. In the 56-65 age group AR had greater BMD than INC (p<0.05) only in the ND leg. Overall, AR had greater BMD compared with INC in all examined sites except for the upper limbs, supporting the notion that running may positively affect bone parameters. However, the benefits differ in the skeletal sites specifically, as the legs had the highest BMD difference between AR and INC. Moreover, the increase in BMD from running decreased with age.
Project description:BackgroundThere are several mechanisms via which increased protein intake might maintain or improve bone mineral density (BMD), but current evidence for an association or effect is inconclusive. The objectives of this study were to investigate the association between dietary protein intake (total, plant and animal) with BMD (spine and total body) and the effects of protein supplementation on BMD.MethodsIndividual data from four trials that included either (pre-)frail, undernourished or healthy older adults (aged ≥65 years) were combined. Dietary intake was assessed with food records (2, 3 or 7 days) and BMD with dual-energy X-ray absorptiometry (DXA). Associations and effects were assessed by adjusted linear mixed models.ResultsA total of 1570 participants [57% women, median (inter-quartile range): age 71 (68-75) years] for which at least total protein intake and total body BMD were known were included in cross-sectional analyses. In fully adjusted models, total protein intake was associated with higher total body and spine BMD [beta (95% confidence interval): 0.0011 (0.0006-0.0015) and 0.0015 (0.0007-0.0023) g/cm2 , respectively]. Animal protein intake was associated with higher total body and spine BMD as well [0.0011 (0.0007-0.0016) and 0.0017 (0.0010-0.0024) g/cm2 , respectively]. Plant protein intake was associated with a lower total body and spine BMD [-0.0010 (-0.0020 to -0.0001) and -0.0019 (-0.0034 to -0.0004) g/cm2 , respectively]. Associations were similar between sexes. Participants with a high ratio of animal to plant protein intake had higher BMD. In participants with an adequate calcium intake and sufficient serum 25(OH)D concentrations, the association between total protein intake with total body and spine BMD became stronger. Likewise, the association between animal protein intake with total body BMD was stronger. In the longitudinal analyses, 340 participants [58% women, median (inter-quartile range): age 75 (70-81) years] were included. Interventions of 12 or 24 weeks with protein supplementation or protein supplementation combined with resistance exercise did not lead to significant improvements in BMD.ConclusionsAn association between total and animal protein intake with higher BMD was found. In contrast, plant protein intake was associated with lower BMD. Research is warranted to further investigate the added value of dietary protein alongside calcium and vitamin D for BMD improvement, especially in osteopenic or osteoporotic individuals. Moreover, more research on the impact of a plant-based diet on bone health is needed.