Project description:A series of cobalt complexes, stabilized by a monoanionic tridentate NCN pincer ligand, was synthetized and characterized. Preparation of the paramagnetic 15 VE complex [Co(NCNCH2-Et)Br] (1) was accomplished by transmetalation of Li[2,6-(Et2NCH2)2C6H3] with CoBr2 in THF. Treatment of this air-sensitive compound with NO gas resulted in the formation of the diamagnetic Co(III) species [Co(NCNCH2-Et)(NO)Br] (2) as confirmed by X-ray diffraction. This complex features a strongly bent NO ligand (Co-N-O∠135.0°). The νNO is observed at 1609 cm-1 which is typical for a bent metal-N-O arrangement. Coordinatively unsaturated 1 could further be treated with pyridine, isocyanides, phosphines and CO to form five-coordinate 17 VE complexes. Oxidation of 1 with CuBr2 led to the formation of the Co(III) complex [Co(NCNCH2-Et)Br2]. Treatment of [Co(NCNCH2-Et)Br2] with TlBF4 as halide scavenger in acetonitrile led to the formation of the cationic octahedral complex [Co(NCNCH2-Et)(MeCN)3](BF4)2. A combination of X-ray crystallography, IR-, NMR- and EPR-spectroscopy as well as DFT/CAS-SCF calculations were used to characterize all compounds.
Project description:The 15e square-planar complexes [Co(PCPMe-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Co(PCP-tBu)(η2-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η2-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d7 low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCPMe-iPr)(η2-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCPMe-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCPMe-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η2-mode. [Ni(PCPMe-iPr)(η2-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCPMe-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCPMe-iPr)H] and [Ni(PCPMe-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) were established by DFT computations.
Project description:The synthesis, characterization, and catalytic activity of low-spin {CoNO}8 pincer complexes of the type [Co(PCP)(NO)(H)] are described. These compounds are obtained either by reacting [Co(PCP)(κ2-BH4)] with NO and Et3N or, alternatively, by reacting [Co(PCP)(NO)]+ with boranes, such as NH3·BH3 in solution. The five-coordinate, diamagnetic Co(III) complex [Co(PCPNMe-iPr)(NO)(H)] was found to be the active species in the hydroboration of alkenes with anti-Markovnikov selectivity. A range of aromatic and aliphatic alkenes were efficiently converted with pinacolborane (HBpin) under mild conditions in good to excellent yield. Mechanistic insight into the catalytic reaction is provided by means of isotope labeling, NMR spectroscopy, and APCI/ESI-MS as well as DFT calculations.
Project description:The reaction of coordinatively unsaturated Co(II) PCP pincer complexes with nitric oxide leads to the formation of new, air-stable, diamagnetic mono nitrosyl compounds. The synthesis and characterization of five- and four-coordinate Co(III) and Co(I) nitrosyl pincer complexes based on three different ligand scaffolds is described. Passing NO through a solution of [Co(PCPNMe-iPr)Cl], [Co(PCPO-iPr)Cl] or [Co(PCPCH2-iPr)Br] led to the formation of the low-spin complex [Co(PCP-iPr)(NO)X] with a strongly bent NO ligand. Treatment of the latter species with (X = Cl, Br) AgBF4 led to chloride abstraction and formation of cationic square-planar Co(I) complexes of the type [Co(PCP-iPr)(NO)]+ featuring a linear NO group. This reaction could be viewed as a formal two electron reduction of the metal center by the NO radical from Co(III) to Co(I), if NO is counted as NO+. Hence, these systems can be described as {CoNO}8 according to the Enemark-Feltham convention. X-ray structures, spectroscopic and electrochemical data of all nitrosyl complexes are presented. Preliminary studies show that [Co(PCPNMe-iPr)(NO)]+ catalyzes efficiently the reductive hydroboration of nitriles with pinacolborane (HBpin) forming an intermediate {CoNO}8 hydride species.
Project description:AbstractA new asymmetric chiral PNP ligand based on the 2,6-diaminopyridine scaffold featuring a R-BINEPINE moiety was prepared. Treatment of anhydrous FeX2 (X = Cl, Br) with 1 equiv of PNP-iPr,BIN at room temperature afforded the coordinatively unsaturated paramagnetic complexes [Fe(PNP-iPr,BIN)X2]. The structure of [Fe(PNP-iPr,BIN)Cl2] is described. Both complexes react readily with the strong π-acceptor ligand CO in solution to afford selectively the diamagnetic complexes trans-[Fe(PNP-iPr,BIN)(CO)X2] in quantitative yield. Due the lability of the CO ligand, these complexes are only stable under a CO atmosphere and isolation in pure form was not possible. The preparation of the carbonyl hydride complex [Fe(PNP-iPr,BIN)(H)(CO)Br] was achieved albeit in low yields via a one pot procedure by treatment of [Fe(PNP-iPr,BINEP)Br2] with CO and subsequent reaction with Na[HBEt3]. This complex was obtained as an inseparable mixture of two diastereomers in a ca. 1:1 ratio and was tested as catalyst for the hydrogenation of ketones. The catalyst showed acceptable activity under mild conditions (5 bar H2, room temperature) with yields up to >99 % within 18 h.Graphical abstract
Project description:This work describes the synthesis of eight new Pd(II) and Pt(II) complexes with the general formula [M(TSC)Cl], where TSC represents the 4N-monosubstituted thiosemicarbazone derived from 2-acetylpyridine N-oxide with the substituents CH3 (H4MLO), C2H5 (H4ELO), phenyl (H4PLO) and (CH3)2 (H4DMLO). These complexes have been characterized by elemental analysis, molar conductivity, IR spectroscopy, 1H, 13C, 195Pt and ESI-MS. The complexes exhibit a square planar geometry around the metallic center coordinated by a thiosemicarbazone molecule acting as a donor ONS-type pincer ligand and by a chloride, as confirmed by the molecular structures of the complexes, [Pd(4ELO)Cl] (3) and [Pd(4PLO)Cl] (5), determined by single-crystal X-ray diffraction. The 195Pt NMR spectra of the complexes of formulae [Pt(4PLO)Cl] (6) and [Pt(4DMLO)Cl] (8) in DMSO show a single signal at -2420.4 ppm, confirming the absence of solvolysis products. Complexes 3 and 5 have been tested as catalysts in the Suzuki-Miyaura cross-coupling reactions of aryl bromides with phenylboronic acid, with yields of between 50 and 90.
Project description:Complexes [M(n)MST(NH3)](n-3) (M(n) = Fe(II), Fe(III), Ga(III)) were prepared and each contains an intramolecular hydrogen bonding network involving the ammonia ligand. Deprotonation of the Fe(III)-NH3 complex afforded a putative [Fe(III)MST(NH2)](-) species whose reactivity has been explored.
Project description:Transition metals such as Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) have been reacted with gibberellic acid (HGA) to give novel complexes, and those have been characterized by physical, spectral and analytical methods. The plant hormone gibberellate acts as a deprotonated bidentate ligand in the complexation reaction with central metal ions in the ratio 1 : 2 (M n+ : GA). The complexes [M(GA)2(H2O)2], where [M = Mn(II), Co(II), and Ni(II)] form octahedral structures, while [M(GA)2] complexes [M = Zn(II), Cd(II), and Hg(II)] display four-coordination geometry. The octahedral structures of Cr(III) and Fe(III) complexes are characterized by the general formula [M(GA)2(H2O)(Cl)]. Computational study carried out has determined possible interactions of the complexes with COVID-19 (6LU7).
Project description:Low-valent group 15 compounds stabilized by pincer ligands have gained particular interest, given their direct access to fine-tune their reactivity by the coordination pattern. Recently, bismuth has been employed in a variety of catalytic transformations by taking advantage of the (+1/+3) redox couple. In this work, we present a detailed quantum-chemical study on the electronic structure of bismuth pincer complexes from two different families, namely, bis(ketimine)phenyl (NCN) and triamide bismuthinidene (NNN). The use of the so-called effective oxidation state analysis allows the unambiguous assignation of the bismuth oxidation state. In contrast to previous studies, our calculations suggest a Bi(+1) assignation for NCN pincer ligands, while Bi(+3) character is found for NNN pincer complexes. Notably, regardless of its oxidation state, the central bismuth atom disposes of up to two lone pairs for coordinating Lewis acids, as indicated by very high first and second proton affinity values. Besides, the Bi-NNN systems can also accommodate two Lewis base ligands, indicating also ambiphilic behavior. The effective fragment orbital analysis of Bi and the ligand allows monitoring of the intricate electron flow of these processes, revealing the noninnocent nature of the NNN ligand, in contrast with the NCN one. By the dissection of the electron density into effective fragment orbitals, we are able to quantify and rationalize the Lewis base/acid character.
Project description:Anhydrous CoCl2 or [NiCl2(DME)] reacts with the ligand PCPMe-iPr (1) in the presence of nBuLi to afford the 15e and 16e square planar complexes [Co(PCPMe-iPr)Cl] (2) and [Ni(PCPMe-iPr)Cl] (3), respectively. Complex 2 is a paramagnetic d7 low-spin complex, which is a useful precursor for a series of Co(I), Co(II), and Co(III) PCP complexes. Complex 2 reacts readily with CO and pyridine to afford the five-coordinate square-pyramidal 17e complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5), respectively, while in the presence of Ag+ and CO the cationic complex [Co(PCPMe-iPr)(CO)2]+ (6) is afforded. The effective magnetic moments μeff of all Co(II) complexes were derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements and are in the range 1.9 to 2.4 μB. This is consistent with a d7 low-spin configuration with some degree of spin-orbit coupling. Oxidation of 2 with CuCl2 affords the paramagnetic Co(III) PCP complex [Co(PCPMe-iPr)Cl2] (7), while the synthesis of the diamagnetic Co(I) complex [Co(PCPMe-iPr)(CO)2] (8) was achieved by stirring 2 in toluene with KC8 in the presence of CO. Finally, the cationic 16e Ni(II) PCP complex [Ni(PCPMe-iPr)(CO)]+ (10) was obtained by reacting complex 3 with 1 equiv of AgSbF6 in the presence of CO. The reactivity of CO addition to Co(I), Co(II), and Ni(II) PCP square planar complexes of the type [M(PCPMe-iPr)(CO)] n (n = +1, 0) was investigated by DFT calculations, showing that formation of the Co species, 6 and 8, is thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is unfavorable in this case. X-ray structures of most complexes are provided and discussed. A structural feature of interest is that the apical CO ligand in 4 deviates significantly from linearity, with a Co-C-O angle of 170.0(1)°. The DFT-calculated value is 172°, clearly showing that this is not a packing but an electronic effect.