Unknown

Dataset Information

0

Pseudo dual-energy CT-derived iodine mapping using single-energy CT data based on a convolution neural network.


ABSTRACT:

Objective

The objectives of this study are: (1) to develop a convolutional neural network model that yields pseudo high-energy CT (CTpseudo_high) from simple image processed low-energy CT (CTlow) images, and (2) to create a pseudo iodine map (IMpseudo) and pseudo virtual non-contrast (VNCpseudo) images for thoracic and abdominal regions.

Methods

Eighty patients who underwent dual-energy CT (DECT) examinations were enrolled. The data obtained from 55, 5, and 20 patients were used for training, validation, and testing, respectively. The ResUnet model was used for image generation model and was trained using CTlow and high-energy CT (CThigh) images. The proposed model performance was evaluated by calculating the CT values, image noise, mean absolute errors (MAEs), and histogram intersections (HIs).

Results

The mean difference in the CT values between CTpseudo_high and CThigh images were less than 6 Hounsfield unit (HU) for all evaluating patients. The image noise of CTpseudo_high was significantly lower than that of CThigh. The mean MAEs was less than 15 HU, and HIs were almost 1.000 for all the patients. The evaluation metrics of IM and VNC exhibited the same tendency as that of the comparison between CTpseudo_high and CThigh images.

Conclusions

Our results indicated that the proposed model enables to obtain the DECT images and material-specific images from only single-energy CT images.

Advances in knowledges

We constructed the CNN-based model which can generate pseudo DECT image and DECT-derived material-specific image using only simple image-processed CTlow images for the thoracic and abdominal regions.

SUBMITTER: Yuasa Y 

PROVIDER: S-EPMC10630979 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pseudo dual-energy CT-derived iodine mapping using single-energy CT data based on a convolution neural network.

Yuasa Yuki Y   Shiinoki Takehiro T   Fujimoto Koya K   Tanaka Hidekazu H  

BJR open 20231018 1


<h4>Objective</h4>The objectives of this study are: (1) to develop a convolutional neural network model that yields pseudo high-energy CT (CT<sub>pseudo_high</sub>) from simple image processed low-energy CT (CT<sub>low</sub>) images, and (2) to create a pseudo iodine map (IM<sub>pseudo</sub>) and pseudo virtual non-contrast (VNC<sub>pseudo</sub>) images for thoracic and abdominal regions.<h4>Methods</h4>Eighty patients who underwent dual-energy CT (DECT) examinations were enrolled. The data obta  ...[more]

Similar Datasets

| S-EPMC6694721 | biostudies-literature
| S-EPMC5544802 | biostudies-other
| S-EPMC7602017 | biostudies-literature
| S-EPMC5132396 | biostudies-literature
| S-EPMC9282453 | biostudies-literature
| S-EPMC8664138 | biostudies-literature
| S-EPMC8379124 | biostudies-literature
| S-EPMC3746324 | biostudies-literature
| S-EPMC8186784 | biostudies-literature
| S-EPMC11232621 | biostudies-literature