Project description:Recent developments of single cell transcriptome profiling methods have led to the realization that many seemingly homogeneous cells have surprising levels of expression variability. The biological implications of the high degree of variability is unclear but one possibility is that many genes are restricted in expression to small lineages of cells, suggesting the existence of many more cell types than previously estimated. Noncoding RNA (ncRNA) are thought to be key parts of gene regulatory processes and their single cell expression patterns may help to dissect the biological function of single cell variability. Technology for measuring ncRNA in single cell is still in development and most of the current single cell datasets have reliable measurements for only long noncoding RNA (lncRNA). Most works report that lncRNAs show lineage-specific restricted expression patterns, which suggest that they might determine, at least in part, lineage fates and cell subtypes. However, evidence is still inconclusive as to whether lncRNAs and other ncRNAs are more lineage-specific than protein-coding genes. Nevertheless, measurement of ncRNAs in single cells will be important for studies of cell types and single cell function. WIREs RNA 2017, 8:e1433. doi: 10.1002/wrna.1433 For further resources related to this article, please visit the WIREs website.
Project description:Noncoding RNAs are proclaimed to be expressed in various cancer types and one such type is found to be pancreatic ductal adenocarcinoma (PDAC). The long noncoding RNAs (LncRNAs) affect the migration, invasion, and growth of tumor cells by playing important roles in the process of epigenesis, post-transcription, and transcriptional regulation along with the maintenance of apoptosis and cell cycle. It is quite subtle whether the alterations in lncRNAs would impact PDAC progression and development. This review throws a spotlight on the lncRNAs associated with tumor functions: MALAT-1, HOTAIR, HOXA13, H19, LINC01559, LINC00460, SNHG14, SNHG16, DLX6-AS1, MSC-AS1, ABHD11-AS1, DUXAP8, DANCR, XIST, DLEU2, etc. are upregulated lncRNAs whereas GAS5, HMlincRNA717, MIAT, LINC01111, lncRNA KCNK15-AS1, etc. are downregulated lncRNAs inhibiting the invasion and progression of PDAC. These data provided helps in the assessment of lncRNAs in the development, metastasis, and occurrence of PDAC and also play a vital role in the evolution of biomarkers and therapeutic agents for the treatment of PDAC.
Project description:A growing number of gene-centric studies have highlighted the emerging significance of lncRNAs in cancer. However, these studies primarily focus on a single cancer type. Therefore, we conducted a pan-cancer analysis of lncRNAs comparing tumor and matched normal expression levels using RNA-Seq data from ? 3,000 patients in 8 solid tumor types. While the majority of differentially expressed lncRNAs display tissue-specific expression we discovered 229 lncRNAs with outlier or differential expression across multiple cancers, which we refer to as 'onco-lncRNAs'. Due to their consistent altered expression, we hypothesize that these onco-lncRNAs may have conserved oncogenic and tumor suppressive functions across cancers. To address this, we associated the onco-lncRNAs in biological processes based on their co-expressed protein coding genes. To validate our predictions, we experimentally confirmed cell growth dependence of 2 novel oncogenic lncRNAs, onco-lncRNA-3 and onco-lncRNA-12, and a previously identified lncRNA CCAT1. Overall, we discovered lncRNAs that may have broad oncogenic and tumor suppressor roles that could significantly advance our understanding of cancer lncRNA biology.
Project description:Normal skeletal development requires tight coordination of transcriptional networks, signaling pathways, and biomechanical cues, and many of these pathways are dysregulated in pathological conditions affecting cartilage and bone. Recently, a significant role has been identified for long noncoding RNAs (lncRNAs) in developing and maintaining cellular phenotypes, and improvements in sequencing technologies have led to the identification of thousands of lncRNAs across diverse cell types, including the cells within cartilage and bone. It is clear that lncRNAs play critical roles in regulating gene expression. For example, they can function as epigenetic regulators in the nucleus via chromatin modulation to control gene transcription, or in the cytoplasm, where they can function as scaffolds for protein-binding partners or modulate the activity of other coding and noncoding RNAs. In this review, we discuss the growing list of lncRNAs involved in normal development and/or homeostasis of the skeletal system, the potential mechanisms by which these lncRNAs might function, and recent improvements in the methodologies available to study lncRNA functions in vitro and in vivo. Finally, we address the likely utility of lncRNAs as biomarkers and therapeutic targets for diseases of the skeletal system, including osteoarthritis, osteoporosis, and in cancers of the skeletal system.
Project description:Osteosarcoma (OS), which occurs most commonly in adolescents, is associated with a high degree of malignancy and poor prognosis. In order to develop an accurate treatment for OS, a deeper understanding of its complex tumor microenvironment (TME) is required. In the present study, tissues were isolated from six patients with OS, and then subjected to single-cell RNA sequencing (scRNA-seq) using a 10× Genomics platform. Multiplex immunofluorescence staining was subsequently used to validate the subsets identified by scRNA-seq. ScRNA-seq of six patients with OS was performed prior to neoadjuvant chemotherapy, and data were obtained on 29,278 cells. A total of nine major cell types were identified, and the single-cell transcriptional map of OS was subsequently revealed. Identified osteoblastic OS cells were divided into five subsets, and the subsets of those osteoblastic OS cells with significant prognostic correlation were determined using a deconvolution algorithm. Thereby, different transcription patterns in the cellular subtypes of osteoblastic OS cells were reported, and key transcription factors associated with survival prognosis were identified. Furthermore, the regulation of osteolysis by osteoblastic OS cells via receptor activator of nuclear factor kappa-B ligand was revealed. Furthermore, the role of osteoblastic OS cells in regulating angiogenesis through vascular endothelial growth factor-A was revealed. C3_TXNIP+ macrophages and C5_IFIT1+ macrophages were found to regulate regulatory T cells and participate in CD8+ T cell exhaustion, illustrating the possibility of immunotherapy that could target CD8+ T cells and macrophages. Our findings here show that the role of C1_osteoblastic OS cells in OS is to promote osteolysis and angiogenesis, and this is associated with survival prognosis. In addition, T cell depletion is an important feature of OS. More importantly, the present study provided a valuable resource for the in-depth study of the heterogeneity of the OS TME.
Project description:Noncoding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer. The best-characterized ncRNAs are the microRNAs (miRNAs), which are short, approximately 22-nucleotide sequences of RNA of approximately 22-nucleotide in length that regulate gene expression at the posttranscriptional level, through transcript degradation or translational repression. MiRNAs can function as master gene regulators, impacting a variety of cellular pathways important to normal cellular functions as well as cancer development and progression. In addition to miRNAs, long ncRNAs, which are transcripts longer than 200 nucleotides, have recently emerged as novel drivers of tumorigenesis. However, the molecular mechanisms of their regulation and function, and the significance of other ncRNAs such as piwi-interacting RNAs in pancreas carcinogenesis are largely unknown. This review summarizes the growing body of evidence supporting the vital roles of ncRNAs in pancreatic cancer, focusing on their dysregulation through both genetic and epigenetic mechanisms, and highlighting the promise of ncRNAs in diagnostic and therapeutic applications of pancreatic cancer.
Project description:BackgroundThe main immune cells in GBM are tumor-associated macrophages (TAMs). Thus far, the studies investigating the activation status of TAM in GBM are mainly limited to bulk RNA analyses of individual tumor biopsies. The activation states and transcriptional signatures of TAMs in GBM remain poorly characterized.MethodsWe comprehensively analyzed single-cell RNA-sequencing data, covering a total of 16,201 cells, to clarify the relative proportions of the immune cells infiltrating GBMs. The origin and TAM states in GBM were characterized using the expression profiles of differential marker genes. The vital transcription factors were examined by SCENIC analysis. By comparing the variable gene expression patterns in different clusters and cell types, we identified components and characteristics of TAMs unique to each GBM subtype. Meanwhile, we interrogated the correlation between SPI1 expression and macrophage infiltration in the TCGA-GBM dataset.ResultsThe expression patterns of TMEM119 and MHC-II can be utilized to distinguish the origin and activation states of TAMs. In TCGA-Mixed tumors, almost all TAMs were bone marrow-derived macrophages. The TAMs in TCGA-proneural tumors were characterized by primed microglia. A different composition was observed in TCGA-classical tumors, which were infiltrated by repressed microglia. Our results further identified SPI1 as a crucial regulon and potential immunotherapeutic target important for TAM maturation and polarization in GBM.ConclusionsWe describe the immune landscape of human GBM at a single-cell level and define a novel categorization scheme for TAMs in GBM. The immunotherapy against SPI1 would reprogram the immune environment of GBM and enhance the treatment effect of conventional chemotherapy drugs.
Project description:The mechanisms of Myc-driven liver tumorigenesis are inadequately understood. Herein we show that Myc-driven hepatocellular carcinoma (HCC) is dramatically aggravated in mice with hepatocyte-specific Ptpn11/Shp2 deletion. However, Myc-induced tumors develop selectively from the rare Shp2-positive hepatocytes in Shp2-deficent liver, and Myc-driven oncogenesis depends on an intact Ras-Erk signaling promoted by Shp2 to sustain Myc stability. Despite a stringent requirement of Shp2 cell autonomously, Shp2 deletion induces an immunosuppressive environment, resulting in defective clearance of tumor-initiating cells and aggressive tumor progression. The basal Wnt/β-catenin signaling is upregulated in Shp2-deficient liver, which is further augmented by Myc transfection. Ablating Ctnnb1 suppresses Myc-induced HCC in Shp2-deficient livers, revealing an essential role of β-catenin. Consistently, Myc overexpression and CTNNB1 mutations are frequently co-detected in HCC patients with poor prognosis. These data elucidate complex mechanisms of liver tumorigenesis driven by cell-intrinsic oncogenic signaling in cooperation with a tumor-promoting microenvironment generated by disrupting the specific oncogenic pathway.
Project description:BackgroundThe anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-β has been shown to contribute to T cell exclusion, and anti-TGF-β improves anti-PD-L1 efficacy in vivo. However, TGF-β inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-β blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-β blockade in the tumor microenvironment should be further elucidated.ResultsWe used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-β blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1.ConclusionsTaken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-β combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.
Project description:"Pancreatic ductal adenocarcinoma (PDAC) is known by its aggressiveness and lack of effective therapeutic options. Thus, improvement in current knowledge of molecular changes associated with pancreatic cancer is urgently needed to explore novel venues of diagnostics and treatment of this dismal disease. While there is mounting evidence that long noncoding RNAs (ncRNAs) transcribed from intronic and intergenic regions of the human genome may play different roles in the regulation of gene expression in normal and cancer cells, their expression pattern and biological relevance in pancreatic cancer is currently unknown. In the present work we investigated the relative abundance of a collection of ncRNAs in patients’ pancreatic tissue samples aiming at identifying gene expression profiles correlated to pancreatic cancer and metastasis. To investigate the relative abundance, we used a custom 3,355-element spotted cDNA microarray interrogating protein-coding genes and putative ncRNA were used to obtain expression profiles from 38 clinical samples of tumor and non-tumor pancreatic tissues. Bioinformatics analyses were performed to characterize structure and conservation of ncRNAs expressed in pancreatic tissues, as well as to identify expression signatures correlated to tissue histology. Strand-specific reverse transcription followed by PCR and qRT-PCR were employed to determine strandedness of ncRNAs and to validate microarray results, respectively. We found that long intronic/intergenic ncRNAs are ubiquitously expressed across tumor and non-tumor pancreatic tissue samples. Enrichment of promoter-H3K4me3 associated chromatin marks and over-representation of conserved DNA elements and stable secondary structure predictions suggest that these transcripts are generated from independent transcriptional units and that at least a fraction is under evolutionary selection, and thus potentially functional. Statistically significant expression signatures comprising protein-coding mRNAs and long ncRNAs that correlate to PDAC or to pancreatic cancer metastasis were identified. Interestingly, loci harboring intronic ncRNAs differentially expressed in PDAC metastases were enriched in genes associated to the MAPK pathway. Orientation-specific RT-PCR documented that intronic transcripts are expressed in sense, antisense or both orientations relative to protein-coding mRNAs. Differential expression of a subset of intronic ncRNAs (PPP3CB, MAP3K14 and DAPK1 loci) in metastatic samples was confirmed by Real-Time PCR. All this results reveal sets of long intronic ncRNAs expressed in pancreatic tissues whose abundance is correlated to PDAC or metastasis, thus pointing to the potential relevance of this class of transcripts in biological processes related to malignant transformation and metastasis in pancreatic cancer. Fluorescent labeled cDNA targets derived from pancreatic tumor and non-tumor tissue from each patient were combined and hybridized to spotted cDNA microarrays. For each patient, a replicate hybridization was performed. For each sample, there are 4 replicate measurements for each probe. "