Project description:BRD4, the most extensively studied member of the BET family, is an epigenetic regulator that localizes to DNA via binding to acetylated histones and controls the expression of therapeutically important gene regulatory networks through the recruitment of transcription factors to form mediator complexes, phosphorylating RNA polymerase II, and by its intrinsic histone acetyltransferase activity. Disrupting the protein-protein interactions between BRD4 and acetyl-lysine has been shown to effectively block cell proliferation in cancer, cytokine production in acute inflammation, and so forth. To date, significant efforts have been devoted to the development of BRD4 inhibitors, and consequently, a dozen have progressed to human clinical trials. Herein, we summarize the advances in drug discovery and development of BRD4 inhibitors by focusing on their chemotypes, in vitro and in vivo activity, selectivity, relevant mechanisms of action, and therapeutic potential. Opportunities and challenges to achieve selective and efficacious BRD4 inhibitors as a viable therapeutic strategy for human diseases are also highlighted.
Project description:Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Project description:Protein tyrosine phosphatases (PTPs) are a diverse family of enzymes encoded by 107 genes in the human genome. Together with protein tyrosine kinases (PTKs), PTPs regulate various cellular activities essential for the initiation and maintenance of malignant phenotypes. While PTK inhibitors are now used routinely for cancer treatment, the PTP inhibitor development field is still in the discovery phase. In this article, the suitability of targeting PTPs for novel anticancer drug discovery is discussed. Examples are presented for PTPs that have been targeted for anticancer drug discovery as well as potential new PTP targets for novel anticancer drug discovery.
Project description:To date, the COVID-19 pandemic has claimed over 1 million human lives, infected another 50 million individuals and wreaked havoc on the global economy. The crisis has spurred the ongoing development of drugs targeting its etiological agent, the SARS-CoV-2. Targeting relevant protein-protein interaction interfaces (PPIIs) is a viable paradigm for the design of antiviral drugs and enriches the targetable chemical space by providing alternative targets for drug discovery. In this review, we will provide a comprehensive overview of the theory, methods and applications of PPII-targeted drug development towards COVID-19 based on recent literature. We will also highlight novel developments, such as the successful use of non-native protein-protein interactions as targets for antiviral drug screening. We hope that this review may serve as an entry point for those interested in applying PPIIs towards COVID-19 drug discovery and speed up drug development against the pandemic.
Project description:Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation. Protein-protein interactions (PPIs) play a crucial role at many stages of autophagy, which present formidable but attainable targets for autophagy regulation. Moreover, selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network. Thus, small-molecule regulators, including peptides and peptidomimetics, targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery. This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs. Successful strategies and existing limitations in this field are also discussed.
Project description:Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.
Project description:Human papillomavirus (HPV) infections are a major human health problem; they are the cause of recurrent benign warts and of several cancers of the anogenital tract and head and neck region. Although there are two prophylactic HPV vaccines that could, if used universally, prevent as many as two-thirds of HPV-induced cancers, as well as several cytotoxic and immunomodulatory agents for localized treatment of infections, there are currently no HPV antiviral drugs in our arsenal of therapeutic agents. This review examines the status of past and ongoing research into the development of HPV antivirals, focused primarily upon approaches targeting the replication of the viral genome. The only HPV enzyme, E1, is a DNA helicase that interfaces with the cellular DNA replication machinery to replicate the HPV genome. To date, searches for small molecule inhibitors of E1 for use as antivirals have met with limited success. The lack of other viral enzymes has meant that the search for antivirals has shifted to a large degree to the modulation of protein-protein interactions. There has been some success in identifying small molecule inhibitors targeting interactions between HPV proteins but with activity against a small subset of viral types only. As noted in this review, it is thought that targeting E1 interactions with cellular replication proteins may provide inhibitors with broader activity against multiple HPV types. Herein, we outline the steps in HPV DNA replication and discuss those that appear to provide the most advantageous targets for the development of anti-HPV therapeutics.
Project description:Heat shock proteins (HSPs) present as a double edged sword. While they play an important role in maintaining protein homeostasis in a normal cell, cancer cells have evolved to co-opt HSP function to promote their own survival. As a result, HSPs such as HSP90 have attracted a great deal of interest as a potential anticancer target. These efforts have resulted in over 20 distinct compounds entering clinical evaluation for the treatment of cancer. However, despite the potent anticancer activity demonstrated in preclinical models, to date no HSP90 inhibitor has obtained regulatory approval. In this review we discuss the unique challenges faced in targeting HSPs that have likely contributed to their lack of progress in the clinic and suggest ways to overcome these so that the enormous potential of these compounds to benefit patients can finally be realized. We also provide a guideline for the future development of HSP-targeted agents based on the many lessons learned during the last two decades in developing HSP90 inhibitors.
Project description:Dementia, most often associated with neurodegenerative diseases, affects millions of people worldwide, predominantly the elderly. Unfortunately, no treatment is still available. Therefore, there is an urgent need to address this situation. This review presents the state of the art of drug discovery and developments in targeting dementia. Several approaches are discussed, such as drug repurposing, the use of small molecules, and phosphodiesterase inhibitors. Furthermore, the review also provides insights into clinical trials of these molecules. Emphasis has been placed on small molecules and multi-target-directed ligands, as well as disease-modifying therapies. Finally, attention is drawn to the possibilities of applications of nanotechnology in managing dementia.
Project description:ObjectiveReducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs.Research design and methodsHere we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system.Main outcome measuresA pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput.ConclusionsThe application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.