Project description:BackgroundThe GATAD1 gene overexpression induced by GATAD1 amplification upregulation is detected in different human tumors. To date, the relationship between GATAD1 amplification and glioma oncogenesis and malignancy is still unknown.MethodsGATAD1 gene amplification and expression were analyzed in 187 gliomas using qPCR and immunostaining. The relation of GATAD1 to patients' prognoses was assessed via the Kaplan-Meier method. The MTT and orthotopic tumor transplantation assays were used to identify the function of GATAD1 in glioma proliferation. cDNA microarray, ChIP qPCR, EMSA and 3C were used to screen the downstream mechanism of GATAD1 regulating glioma proliferation.ResultsOur results indicated that GATAD1 gene amplification and GATAD1 gene expression are novel independent diagnosis biomarkers to indicate poor outcome of glioma patients. GATAD1 knockdown can remarkably suppress GBM cell proliferation both in vitro and in vivo. GATAD1 could promote CCND1 gene transcription by inducing long range chromatin architectural interaction on the CCND1 promoter. Then GATAD1 sequentially accelerates GBM cell cycle transition and proliferation via regulating CCND1.ConclusionsWe identify GATAD1 as a novel potential diagnosis biomarker and promising prognosis predictor in glioma patients. Functionally, we confirm GATAD1 as an epigenetic chromatin topological regulator that promotes glioma proliferation by targeting CCND1.
Project description:DNA damage-inducible transcript 3 (DDIT3) is a transcription factor central to apoptosis, differentiation, and stress response. DDIT3 has been extensively studied in cancer biology. However, its precise implications in breast cancer progression and its interaction with the immune microenvironment are unclear. In this study, we utilized a novel multi-omics integration strategy, combining bulk RNA sequencing, single-cell sequencing, spatial transcriptomics and immunohistochemistry, to explore the role of DDIT3 in breast cancer and establish the correlation between DDIT3 and poor prognosis in breast cancer patients. We identified a robust prognostic signature, including six genes (unc-93 homolog B1, TLR signaling regulator, anti-Mullerian hormone, DCTP pyrophosphatase 1, mitochondrial ribosomal protein L36, nuclear factor erythroid 2, and Rho GTPase activating protein 39), associated with DDIT3. This signature stratified the high-risk patient groups, characterized by increased infiltration of the regulatory T cells and M2-like macrophages and fibroblast growth factor (FGF)/FGF receptor signaling activation. Notably, the high-risk patient group demonstrated enhanced sensitivity to immunotherapy, presenting novel therapeutic opportunities. Integrating multi-omics data helped determine the spatial expression pattern of DDIT3 in the tumor microenvironment and its correlation with immune cell infiltration. This multi-dimensional analysis provided a comprehensive understanding of the intricate interplay between DDIT3 and the immune microenvironment in breast cancer. Overall, our study not only facilitates understanding the role of DDIT3 in breast cancer but also offers innovative insights for developing prognostic models and therapeutic strategies. Identifying the DDIT3-related prognostic signature and its association with the immune microenvironment provided a promising avenue for personalized breast cancer treatment.
Project description:Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer. It is defined by cholangiocytic differentiation and has poor prognosis. Recently, epigenetic processes have been shown to play an important role in cholangiocarcinogenesis. We performed an integrative analysis on 52 iCCAs using both genetic and epigenetic data with a specific focus on DNA methylation components. We found recurrent isocitrate dehydrogenase 1 (IDH1) and IDH2 (28%) gene mutations, recurrent arm-length copy number alterations (CNAs), and focal alterations such as deletion of 3p21 or amplification of 12q15, which affect BRCA1 Associated Protein 1, polybromo 1, and mouse double minute 2 homolog. DNA methylome analysis revealed excessive hypermethylation of iCCA, affecting primarily the bivalent genomic regions marked with both active and repressive histone modifications. Integrative clustering of genetic and epigenetic data identified four iCCA subgroups with prognostic relevance further designated as IDH, high (H), medium (M), and low (L) alteration groups. The IDH group consisted of all samples with IDH1 or IDH2 mutations and showed, together with the H group, a highly disrupted genome, characterized by frequent deletions of chromosome arms 3p and 6q. Both groups showed excessive hypermethylation with distinct patterns. The M group showed intermediate characteristics regarding both genetic and epigenetic marks, whereas the L group exhibited few methylation changes and mutations and a lack of CNAs. Methylation-based latent component analysis of cell-type composition identified differences among these four groups. Prognosis of the H and M groups was significantly worse than that of the L group. Conclusion: Using an integrative genomic and epigenomic analysis approach, we identified four major iCCA subgroups with widespread genomic and epigenomic differences and prognostic implications. Furthermore, our data suggest differences in the cell-of-origin of the iCCA subtypes.
Project description:Glioma is the most common human primary brain cancer with high mortality and unfavorable clinical outcome. Coagulation factor 2 thrombin receptor (F2R), is a key component in the thrombosis process and has been demonstrated upregulated in various cancers. However, the effect and molecular mechanisms of F2R in glioma remains unclear. In our study, we confirmed that the expression of F2R was upregulated in glioma and predicted poor prognosis. Gene Set Enrichment Analysis (GSEA) and function assays demonstrated that F2R overexpression promoted glioma cell proliferation, metastasis and epithelial-mesenchymal transition (EMT) in vitro and tumor growth in vivo. Then, we identified and validated F2R was the target gene of SRY-box 2 (SOX2) by dual luciferase reporter assay and chromatin immunoprecipitation assay. Besides, High expression of F2R in malignant glioma was associated with β-catenint signaling pathway activation. Our findings conclude that F2R promotes glioma cell proliferation and metastasis under SOX2 and actives WNT/β-catenin Signaling pathway, which provides novel insight to the therapeutic regimen in glioma.
Project description:An integrative functional genomics of multiple forms of data is vital for discovering molecular drivers of cancer development and progression. Here, we present an integrated genomic strategy utilizing DNA methylation and transcriptome profile data to discover epigenetically regulated genes implicated in cancer development and invasive progression. More specifically, this analysis identified Fibromodulin (FMOD) as a glioblastoma (GBM) upregulated gene due to the loss of promoter methylation. Secreted FMOD promotes glioma cell migration through its ability to induce filamentous actin stress fiber formation. Treatment with Cytochalasin D, an actin polymerization inhibitor, significantly reduced the FMOD induced glioma cell migration. siRNA and small molecule inhibitor-based studies identified that FMOD-induced glioma cell migration is dependent on Integrin-FAK-Src-Rho-ROCK signaling pathway. FMOD lacking C terminus LRR11 domain (FMOD), which does not bind collagen type I, failed to induce integrin and promote glioma cell migration. Further, FMOD-induced integrin activation and migration was abrogated by a 9-mer wild type peptide from the FMOD C-terminus. However, the same peptide with mutation in two residues essential for FMOD interaction with collagen type I failed to compete with FMOD, thus signifying the importance of collagen type I-FMOD interaction in integrin activation. ChIP-PCR experiments revealed that TGF-Ã1 regulates FMOD expression through epigenetic remodeling of FMOD promoter that involved demethylation and gain of active histone marks with a simultaneous loss of DNMT3A and EZH2 occupancy, but enrichment of SMAD2 and CBP. FMOD silencing inhibited the TGF-Ã1 mediated glioma cell migration significantly. In univariate and multivariate cox regression analysis, both FMOD promoter methylation and transcript levels predicted prognosis in GBM. Thus, the present study identified several epigenetically regulated alterations responsible for cancer development and progression. Specifically, we found that secreted FMOD as an important regulator of glioma cell migration downstream of TGF-Ã1 pathway and forms a potential basis for therapeutic intervention in GBM. We used DNA isolated from 17 diffuse astrocytoma, 16 anaplastic astrocytoma, 36 glioblastoma and 9 control brain tissue for the array. P53 status: All cases were subjected to histopathology and the diagnosis of GBM was confirmed. Paraffin sections (4 μm) from the tissues were collected on silane-coated slides, and the protein expression of p53 was assessed by immunohistochemistry (IHC). Antigen retrieval was done by heat treatment at 850W in citrate buffer or at 700W. After the initial processing steps, sections were incubated overnight with primary antibody for p53 (Mouse Monoclonal DO-7; Biogenex, USA)at 4°C with 1: 200 dilution. MIB: Paraffin blocks of all the cases were retrieved, and histological features were reviewed on freshly cut and stained (hematoxylin and eosin) sections. After confirming the diagnosis of glioblastoma, 4 µm thick sections were collected on silane-coated slides, and IHC was performed using MIB-1 (anti Ki-67 monoclonal BGX 297, diluted to 1:30) EGFR status: Paraffin blocks of all the cases were retrieved, and histological features were reviewed on freshly cut and stained (hematoxylin and eosin) sections. After confirming the diagnosis of glioblastoma, 4 µm thick sections were collected on silane-coated slides, and IHC was performed using EGFR (monoclonal E-30, diluted to 1:50) GFAP status: Paraffin blocks of all the cases were retrieved, and histological features were reviewed on freshly cut and stained (hematoxylin and eosin) sections. After confirming the diagnosis of glioblastoma, 4 µm thick sections were collected on silane-coated slides, and IHC was performed using glial fibrillary acidic protein (GFAP, monoclonal GA-5, diluted to 1:100).
Project description:Metabolic homeostasis in mammals critically depends on the regulation of fasting-induced genes by CREB in the liver. Previous genome-wide analysis has shown that only a small percentage of CREB target genes are induced in response to fasting-associated signaling pathways. The precise molecular mechanisms by which CREB specifically targets these genes in response to alternating hormonal cues remain to be elucidated.We performed chromatin immunoprecipitation coupled to high-throughput sequencing of CREB in livers from both fasted and re-fed mice. In order to quantitatively compare the extent of CREB-DNA interactions genome-wide between these two physiological conditions we developed a novel, robust analysis method, termed the 'single sample independence' (SSI) test that greatly reduced the number of false-positive peaks. We found that CREB remains constitutively bound to its target genes in the liver regardless of the metabolic state. Integration of the CREB cistrome with expression microarrays of fasted and re-fed mouse livers and ChIP-seq data for additional transcription factors revealed that the gene expression switches between the two metabolic states are associated with co-localization of additional transcription factors at CREB sites.Our results support a model in which CREB is constitutively bound to thousands of target genes, and combinatorial interactions between DNA-binding factors are necessary to achieve the specific transcriptional response of the liver to fasting. Furthermore, our genome-wide analysis identifies thousands of novel CREB target genes in liver, and suggests a previously unknown role for CREB in regulating ER stress genes in response to nutrient influx.
Project description:An integrative functional genomics of multiple forms of data is vital for discovering molecular drivers of cancer development and progression. Here, we present an integrated genomic strategy utilizing DNA methylation and transcriptome profile data to discover epigenetically regulated genes implicated in cancer development and invasive progression. More specifically, this analysis identified Fibromodulin (FMOD) as a glioblastoma (GBM) upregulated gene due to the loss of promoter methylation. Secreted FMOD promotes glioma cell migration through its ability to induce filamentous actin stress fiber formation. Treatment with Cytochalasin D, an actin polymerization inhibitor, significantly reduced the FMOD induced glioma cell migration. siRNA and small molecule inhibitor-based studies identified that FMOD-induced glioma cell migration is dependent on Integrin-FAK-Src-Rho-ROCK signaling pathway. FMOD lacking C terminus LRR11 domain (FMOD), which does not bind collagen type I, failed to induce integrin and promote glioma cell migration. Further, FMOD-induced integrin activation and migration was abrogated by a 9-mer wild type peptide from the FMOD C-terminus. However, the same peptide with mutation in two residues essential for FMOD interaction with collagen type I failed to compete with FMOD, thus signifying the importance of collagen type I-FMOD interaction in integrin activation. ChIP-PCR experiments revealed that TGF-ß1 regulates FMOD expression through epigenetic remodeling of FMOD promoter that involved demethylation and gain of active histone marks with a simultaneous loss of DNMT3A and EZH2 occupancy, but enrichment of SMAD2 and CBP. FMOD silencing inhibited the TGF-ß1 mediated glioma cell migration significantly. In univariate and multivariate cox regression analysis, both FMOD promoter methylation and transcript levels predicted prognosis in GBM. Thus, the present study identified several epigenetically regulated alterations responsible for cancer development and progression. Specifically, we found that secreted FMOD as an important regulator of glioma cell migration downstream of TGF-ß1 pathway and forms a potential basis for therapeutic intervention in GBM.
Project description:Individuals with the rs671 SNP in the gene encoding aldehyde dehydrogenase 2 (ALDH2) are at increased risk of cardiovascular disease (CVD); however, it has been unclear if this mutation contributes to CVD development. In this issue of the JCI, Zhong et al. perform an elegant set of experiments that reveal a pathway wherein the ALDH2 rs671 mutant is phosphorylated by AMPK and translocates to the nucleus where it represses the transcription of a lysosomal H+ pump subunit that is critical for lipid degradation and foam cell formation, as occurs in atherosclerosis. The discovery of this pathway may explain how subjects harboring ALDH2 rs671 are at a greater risk for numerous other disease states and thereby provide new targets for therapeutic intervention.
Project description:Monocarboxylate transporter 4 (MCT4, SLC16A3) is elevated under hypoxic conditions in many malignant tumors including gliomas. Moreover, MCT4 expression is associated with shorter overall survival. However, the functional consequences of MCT4 expression on the distinct hallmarks of cancer have not yet been explored at the cellular level. Here, we investigated the impact of MCT4 overexpression on proliferation, survival, cell death, migration, invasion, and angiogenesis in F98 glioma cells. Stable F98 glioma cell lines with MCT4 overexpression, normal expression, and knockdown were generated. Distinct hallmarks of cancer were examined using in silico analysis, various in vitro cell culture assays, and ex vivo organotypic rat brain slice culture model. Consistent with its function as lactate and proton exporter, MCT4 expression levels correlated inversely with extracellular pH and proportionally with extracellular lactate concentrations. Our results further indicate that MCT4 promotes proliferation and survival by altered cell cycle regulation and cell death mechanisms. Moreover, MCT4 overexpression enhances cell migration and invasiveness via reorganization of the actin cytoskeleton. Finally, MCT4 inhibition mitigates the induction of angiogenesis, suggesting that MCT4 also plays a crucial role in tumor-related angiogenesis. In summary, our data highlight MCT4/SLC16A3 as a key gene for distinct hallmarks of tumor malignancy in glioma cells.
Project description:BackgroundThe glioma-associated stromal cell (GASC) is a recently identified type of cell in the glioma microenvironment and may be a prognostic marker for glioma. However, the potential mechanisms of GASCs in the glioma microenvironment remain largely unknown. In this work, we aimed to explore the mechanisms of GASCs in gliomas, particularly in high-grade gliomas (HGG).MethodsWe used glioma datasets from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We utilized the Single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm to discriminate between patients with high or low GASC composition. The xCELL and CIBERSORT algorithms were used to analyze the composition of stromal cells and immune cells. Risk score and a nomogram model were constructed for prognostic prediction of glioma.ResultsWe observed for the first time that the levels of M2 macrophages and immune checkpoints (PD-1, PD-L1, PD-L2, TIM3, Galectin-9, CTLA-4, CD80, CD86, CD155, and CIITA) were significantly higher in the high GASC group and showed positive correlation with the GASC score in all glioma population and the HGG population. Copy number variations of DR3 and CIITA were higher in the high-GASC group. THY1, one of the GASC markers, exhibited lower methylation in the high GASC group. The constructed risk score was an independent predictor of glioma prognostics. Finally, a credible nomogram based on the risk score was established.ConclusionsGASCs stimulate glioma malignancy through the M2 macrophage, and are associated with the level of immune checkpoints in the glioma microenvironment. The methylation of THY1 could be used as prognostic indicator and treatment target for glioma. However, further studies are required to verify these findings.