Project description:BackgroundLung cancer causes a huge disease burden, and early detection of positive pulmonary nodules (PPNs) as an early sign of lung cancer is extremely important for effective intervention. It is necessary to develop PPNs risk recognizer based on machine learning algorithm combined with central carbon metabolomics.MethodsThe study included 2248 participants at high risk for lung cancer from the Ma'anshan Community Lung Cancer Screening cohort. The Least Absolute Shrinkage and Selection Operator (LASSO) was used to screen 18 central carbon-related metabolites in plasma, recursive feature elimination (RFE) was used to select all 42 features, followed by five machine learning algorithms for model development. The performance of the model was evaluated using area under the receiver operator characteristic curve (AUC), accuracy, precision, recall, and F1 scores. In addition, SHapley Additive exPlanations (SHAP) was performed to assess the interpretability of the final selected model and to gain insight into the impact of features on the predicted results.ResultsFinally, the two prediction models based on the random forest (RF) algorithm performed best, with AUC values of 0.87 and 0.83, respectively, better than other models. We found that homogentisic acid, fumaric acid, maleic acid, hippuric acid, gluconic acid, and succinic acid played a significant role in both PPNs prediction model and NPNs vs PPNs model, while 2-oxadipic acid only played a role in the former model and phosphopyruvate only played a role in the NPNs vs PPNs model. This model demonstrates the potential of central carbon metabolism for PPNs risk prediction and identification.ConclusionWe developed a series of predictive models for PPNs, which can help in the early detection of PPNs and thus reduce the risk of lung cancer.
Project description:The antler regeneration has been well studied for the past two decades and adopted in the regenerative medicine model for studying on developmental biology. Despite our growing knowledge of functional molecules regulating antler regeneration, we still do not know whether antler from different deer species possess the exact same mechanism or not. Our previous comparative study between sika deer and red deer suggests that the metabolic pathways between them are profoundly different based on protein level. Therefore, the metabolomic technology is used to identify and quantify the metabolites in antler samples, providing interesting insights into differential metabolite profile of antlers between sika deer and red deer. The distinct metabolic characteristics of sika deer compared to red deer provide an opportunity to explain why the red deer antler with a larger size. The enrichment analysis of differential metabolites showed that three pathways including glycine and serine metabolism, methionine metabolism, and pterine biosynthesis had a significant difference between two antler groups.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive condition characterized by the impairment of alveolar epithelial cells. Despite continued research efforts, the effective therapeutic medication is still absent due to an incomplete understanding of the underlying etiology. It has been shown that rhythmic alterations are of significant importance in the pathophysiology of IPF. However, a comprehensive understanding of how metabolite level changes with circadian rhythms in individuals with IPF is lacking. Here, we constructed an extensive metabolite database by utilizing an unbiased reference system culturing with 13C or 15N labeled nutrients. Using LC-MS analysis via ESI and APCI ion sources, 1300 potential water-soluble metabolites were characterized and applied to evaluate the metabolic changes with rhythm in the lung from both wild-type mice and mice with IPF. The metabolites, such as glycerophospholipids and amino acids, in WT mice exhibited notable rhythmic oscillations. The concentrations of phospholipids reached the highest during the fast state, while those of amino acids reached their peak during fed state. Similar diurnal variations in the metabolite rhythm of amino acids and phospholipids were also observed in IPF mice. Although the rhythmic oscillation of metabolites in the urea cycle remained unchanged, there was a significant up-regulation in their levels in the lungs of IPF mice. 15N-ammonia in vivo isotope tracing further showed an increase in urea cycle activity in the lungs of mice with IPF, which may compensate for the reduced efficiency of the hepatic urea cycle. In sum, our metabolomics database and method provide evidence of the periodic changes in lung metabolites, thereby offering valuable insights to advance our understanding of metabolic reprogramming in the context of IPF.
Project description:Tracking the metabolic activity of whole soil communities can improve our understanding of the transformation and fate of carbon in soils. We used stable isotope metabolomics to trace 13C from nine labeled carbon sources into the water-soluble metabolite pool of an agricultural soil over time. Soil was amended with a mixture of all nine sources, with one source isotopically labeled in each treatment. We compared changes in the 13C enrichment of metabolites with respect to carbon source and time over a 48-day incubation and contrasted differences between soluble sources (glucose, xylose, amino acids, etc.) and insoluble sources (cellulose and palmitic acid). Whole soil metabolite profiles varied singularly by time, while the composition of 13C-labeled metabolites differed primarily by carbon source (R2 = 0.68) rather than time (R2 = 0.07), with source-specific differences persisting throughout incubations. The 13C labeling of metabolites from insoluble carbon sources occurred slower than that from soluble sources but yielded a higher average atom percent (atom%) 13C in metabolite markers of biomass (amino acids and nucleic acids). The 13C enrichment of metabolite markers of biomass stabilized between 5 and 15 atom% 13C by the end of incubations. Temporal patterns in the 13C enrichment of tricarboxylic acid cycle intermediates, nucleobases (uracil and thymine), and by-products of DNA salvage (allantoin) closely tracked microbial activity. Our results demonstrate that metabolite production in soils is driven by the carbon source supplied to the community and that the fate of carbon in metabolites do not generally converge over time as a result of ongoing microbial processing and recycling. IMPORTANCE Carbon metabolism in soil remains poorly described due to the inherent difficulty of obtaining information on the microbial metabolites produced by complex soil communities. Our study demonstrates the use of stable isotope probing (SIP) to study carbon metabolism in soil by tracking 13C from supplied carbon sources into metabolite pools and biomass. We show that differences in the metabolism of sources influence the fate of carbon in soils. Heterogeneity in 13C-labeled metabolite profiles corresponded with compositional differences in the metabolically active populations, providing a basis for how microbial community composition correlates with the quality of soil carbon. Our study demonstrates the application of SIP-metabolomics in studying soils and identifies several metabolite markers of growth, activity, and other aspects of microbial function.
Project description:Repurposing metformin for cancer therapy is attractive due to its safety profile, epidemiological evidence, and encouraging data from human clinical trials. Although it is known to systemically affect glucose metabolism in liver, muscle, gut, and other tissues, the molecular determinants that predict a patient response in cancer remain unknown. Here, we carry out an integrative metabolomics analysis of metformin action in ovarian cancer. Metformin accumulated in patient biopsies, and pathways involving nucleotide metabolism, redox, and energy status, all related to mitochondrial metabolism, were affected in treated tumors. Strikingly, a metabolic signature obtained from a patient with an exceptional clinical outcome mirrored that of a responsive animal tumor. Mechanistically, we demonstrate with stable isotope tracing that these metabolic signatures are due to an inability to adapt nutrient utilization in the mitochondria. This analysis provides new insights into mitochondrial metabolism and may lead to more precise indications of metformin in cancer.
Project description:ObjectiveSignal transduction not only initiates entry into the cell cycle, but also reprograms the cell's metabolism. To control abnormalities in cell proliferation, both the aspects should be taken care of, thus pleiotropic signaling molecules are considered as crucial modulators. Considering this, we investigated the role of AKT1 in central carbon metabolism. The role of AKT1 has already been established in the process of cell cycle, but its contribution to the central carbon metabolism is sparsely studied.ResultsTo address this, we combined the metabolomics and proteomics approaches. In accordance to our hypothesis, we found that the AKT1 kinase activity is regulating the levels of acetyl CoA through pyruvate dehydrogenase complex. Further, the decreased levels of acetyl CoA and dependency of acetyl CoA acetyl transferase protein on AKT1 kinase activity was also found to perturb the synthesis rate of palmitic acid which is a representative of fatty acid. This was analyzed in the present study using lipid labeling method through mass spectrometry.
Project description:Diazotrophic bacteria are an attractive biological alternative to synthetic nitrogen fertilizers due to their remarkable capacity to fix atmospheric nitrogen gas to ammonium via nitrogenase enzymes. However, how diazotrophic bacteria tailor central carbon catabolism to accommodate the energy requirement for nitrogenase activity is largely unknown. In this study, we used Azotobacter vinelandii DJ and an ammonium excreting mutant, AV3 (ΔNifL), to investigate central carbon metabolism fluxes and central cell bioenergetics in response to ammonium availability and nitrogenase activity. Enabled by the powerful and reliable methodology of 13C-metabolic flux analysis, we show that the respiratory TCA cycle is upregulated in association with increased nitrogenase activity and causes a monotonic decrease in specific growth rate. Whereas the activity of the glycolytic Entner-Doudoroff pathway is positively correlated with the cell growth rate. These new observations are formulated into a 13C-metabolic flux model which further improves the understanding and interpretation of intracellular bioenergetics. This analysis leads to the conclusion that, under aerobic conditions, respiratory TCA metabolism is responsible for the supply of additional ATP and reducing equivalents required for elevated nitrogenase activity. This study provides a quantitative relationship between central carbon and nitrogen metabolism in an aerobic diazotroph for the first time.
Project description:BackgroundInorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. A more efficient arsenic metabolism profile (lower MMA%, higher DMA%) has been associated with reduced risk for arsenic-related health outcomes. This profile, however, has also been associated with increased risk for diabetes-related outcomes.ObjectivesThe mechanism behind these conflicting associations is unclear; we hypothesized the one-carbon metabolism (OCM) pathway may play a role.MethodsWe evaluated the influence of OCM on the relationship between arsenic metabolism and diabetes-related outcomes (HOMA2-IR, waist circumference, fasting plasma glucose) using metabolomic data from an OCM-specific and P180 metabolite panel measured in plasma, arsenic metabolism measured in urine, and HOMA2-IR and FPG measured in fasting plasma. Samples were drawn from baseline visits (2001-2003) in 59 participants from the Strong Heart Family Study, a family-based cohort study of American Indians aged ≥14 years from Arizona, Oklahoma, and North/South Dakota.ResultsIn unadjusted analyses, a 5% increase in DMA% was associated with higher HOMA2-IR (geometric mean ratio (GMR)= 1.13 (95% CI: 1.03, 1.25)) and waist circumference (mean difference=3.66 (0.95, 6.38). MMA% was significantly associated with lower HOMA2-IR and waist circumference. After adjustment for OCM-related metabolites (SAM, SAH, cysteine, glutamate, lysophosphatidylcholine 18.2, and three phosphatidlycholines), associations were attenuated and no longer significant.ConclusionsThese preliminary results indicate that the association of lower MMA% and higher DMA% with diabetes-related outcomes may be influenced by OCM status, either through confounding, reverse causality, or mediation.
Project description:The yeast Saccharomyces cerevisiae is an attractive industrial microorganism for the production of foods and beverages as well as for various bulk and fine chemicals, such as biofuels or fragrances. Building blocks for these biosyntheses are intermediates of yeast central carbon metabolism (CCM), whose intracellular availability depends on balanced single reactions that form metabolic fluxes. Therefore, efficient product biosynthesis is influenced by the distribution of these fluxes. We recently demonstrated great variations in CCM fluxes between yeast strains of different origins. However, we have limited understanding of flux modulation and the genetic basis of flux variations. In this study, we investigated the potential of quantitative trait locus (QTL) mapping to elucidate genetic variations responsible for differences in metabolic flux distributions (fQTL). Intracellular metabolic fluxes were estimated by constraint-based modelling and used as quantitative phenotypes, and differences in fluxes were linked to genomic variations. Using this approach, we detected four fQTLs that influence metabolic pathways. The molecular dissection of these QTLs revealed two allelic gene variants, PDB1 and VID30, contributing to flux distribution. The elucidation of genetic determinants influencing metabolic fluxes, as reported here for the first time, creates new opportunities for the development of strains with optimized metabolite profiles for various applications.
Project description:Integration of the omics data, including metabolomics and proteomics, provides a unique opportunity to search for new associations within metabolic disorders, including Alzheimer's disease. Using metabolomics, we have previously profiled oxylipins, endocannabinoids, bile acids, and steroids in 293 CSF and 202 matched plasma samples from AD cases and healthy controls and identified both central and peripheral markers of AD pathology within inflammation-regulating cytochrome p450/soluble epoxide hydrolase pathway. Additionally, using proteomics, we have identified five cerebrospinal fluid protein panels, involved in the regulation of energy metabolism, vasculature, myelin/oligodendrocyte, glia/inflammation, and synapses/neurons, affected in AD, and reflective of AD-related changes in the brain. In the current manuscript, using metabolomics-proteomics data integration, we describe new associations between peripheral and central lipid mediators, with the above-described CSF protein panels. Particularly strong associations were observed between cytochrome p450/soluble epoxide hydrolase metabolites, bile acids, and proteins involved in glycolysis, blood coagulation, and vascular inflammation and the regulators of extracellular matrix. Those metabolic associations were not observed at the gene-co-expression level in the central nervous system. In summary, this manuscript provides new information regarding Alzheimer's disease, linking both central and peripheral metabolism, and illustrates the necessity for the "omics" data integration to uncover associations beyond gene co-expression.