Project description:Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.
Project description:The aim of this study was to evaluate the effect of different surface treatments on the shear bond strength (SBS) between metal orthodontic brackets and monolithic zirconia surfaces bonded with resin composite. Fifty monolithic zirconia (4Y-TZP) disks were sintered and glazed. Specimens were divided into five groups (n = 10) for different surface treatments: control, nano second fiber laser, sandblasting, grinding and tribochemical coating (CoJet Sand 30-μm). Metal orthodontic brackets were bonded to monolithic zirconia surface by two-component orthodontic adhesive. After 500 cycles of thermocycling, shear bond strength values were measured by a universal testing machine at a cross head speed of 0.5 mm/min. The data was recorded as MPa and statistically analyzed with One-way ANOVA, Levene's LSD tests with Bonferroni corrections. The significance level was α = 0.05. The surface topography of one specimen of each group was evaluated by scanning electron microscopy (SEM). Statistically significant difference was observed among study groups (p = 0.018). The lowest shear bond strength was observed in the control group (3.92 ± 1.9). Tribochemical coating showed the highest bond strength (7.44 ± 2.9), which was statistically different from the control and nano second laser (4.3 ± 1.4) groups but not statistically different from grinding (6.15 ± 3.1) or sandblasting (6.47 ± 3.3). SEM images showed comprehensive results of each surface treatment on monolithic zirconia. All failure modes were recorded as adhesive between the composite resin and monolithic zirconia. Based on the findings of this study, it can be concluded that grinding, sandblasting and tribochemical coating techniques showed clinically acceptable bond strength within the range of 6-8 MPa. These surface treatments can be considered suitable for achieving a durable bond between metal orthodontic brackets and monolithic 4Y-TZP ceramic surfaces.
Project description:An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. : Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets.Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05.Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged.Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.
Project description:AimThe aim of this study was to evaluate and compare the effect of different methods of recycling stainless steel orthodontic brackets on shear bond strength.MethodsOne hundred twenty human premolars extracted for orthodontic purpose were randomly divided into four groups. Standard MBT (0.022″) brackets were bonded on the buccal surface of all samples with light cured adhesive primers using an LED curing unit for 10 seconds. Group I was assigned as control, and the brackets of Group II, Group III, and Group IV were subjected to recycling by flaming, flaming with sandblasting, and flaming with ultrasonic cleaning, respectively. The recycled brackets were rebonded, and final debonding of all brackets was performed using a universal testing machine at a crosshead speed of 0.5 mm/min and shear bond strength was determined. Data were analyzed with descriptive statistics, ANOVA, and post hoc tests. The adhesive remnant index was evaluated using a stereomicroscope at 10X magnification.ResultsThe highest shear bond strength was obtained with Group I (10.35 ± 0.46 MPa), followed by Group III (9.36 ± 0.55 MPa) and Group IV (5.97 ± 0.66 MPa), and the least value was obtained with Group II (4.30 ± 0.55 Mpa). Significant differences among the groups were detected by analysis of variance. Tukey's post hoc multiple comparison test showed that the shear bond strength of each group was significantly different from one another (p < 0.001).ConclusionsShear bond strength of new brackets was significantly higher than that of the recycled brackets. Among recycled brackets, flaming with sandblasting provided adequate shear bond strength, flaming with ultrasonic cleaning provided a borderline value for clinical use, and flaming alone led to a significantly lower value.
Project description:The aim of this research is to evaluate cyclic (CSBS) and static shear bond strengths (SSBS) of metal orthodontic brackets bonded to composite laminates using different conditioning protocols.A total of 80 direct nanofilled composite laminate veneers were prepared on permanent incisors and divided into four equal groups according to different surface treatments. In group 1, diamond bur was used. In group 2, microetcher (50-?m alumina particles) was utilized. In group 3, 38% phosphoric acid treatment for 60 s was done. In group 4 (control group), metal brackets were bonded to the untreated veneer surfaces using no-mix adhesive resin. SSBS testing was carried out for ten specimens, while CSBS testing was done for another ten specimens from each group. The data were subjected to analysis of variance and Scheffe post hoc test. The chi-square test was used to determine significant differences in the adhesive remnant index scores among different groups.Statistically significant difference was only found between SSBS of brackets bonded when surface treatment was done using the diamond bur, microetcher, and the phosphoric acid at P<0.05. With regard to CSBS, the use of bur treatment and microetching achieved the highest values; however, there was no significant difference between these two groups. With phosphoric acid, surface treatment achieved the lowest CSBS value; there was no significant difference between this group and the control group. The SSBS was significantly higher than CSBS in all groups.Roughening composite laminate veneers with either diamond bur or microetcher could be used successfully as an alternative to provide higher bond strength than phosphoric acid surface treatment. Cyclic loading significantly decreased bond strength.
Project description:The objective of this study is to assess, in vitro, the shear bond strength of orthodontic brackets fixed with remineralizing adhesive systems submitted to thermomechanical cycling, simulating one year of orthodontic treatment. Sixty-four bovine incisor teeth were randomly divided into 4 experimental groups (n = 16): XT: Transbond XT, QC: Quick Cure, OL: Ortholite Color, and SEP: Transbond Plus Self-Etching Primer. The samples were submitted to thermomechanical cycling simulating one year of orthodontic treatment. Shear bond strength tests were carried out using a universal testing machine with a load cell of 50 KgF at 0.5 mm/minute. The samples were examined with a stereomicroscope and a scanning electron microscope (SEM) in order to analyze enamel surface and Adhesive Remnant Index (ARI). Kruskal-Wallis and Mann-Whitney (with Bonferroni correction) tests showed a significant difference between the studied groups (p < 0.05). Groups XT, QC, and SEP presented the highest values of adhesive resistance and no statistical differences were found between them. The highest frequency of failures between enamel and adhesive was observed in groups XT, QC, and OL. Quick Cure (QC) remineralizing adhesive system presented average adhesive resistance values similar to conventional (XT) and self-etching (SEP) adhesives, while remineralizing system (OL) provided the lowest values of adhesive resistance.
Project description:Introduction: Remineralizing agents may be used for the treatment of white spot lesions (WSLs) prior to bracket bonding. However, some concerns exist regarding their possible interference with the etching and bonding process, negatively affecting the bond strength. This study aimed to assess the effect of two remineralizing agents with/without CO2 laser irradiation on the mechanical properties and shear bond strength (SBS) of demineralized enamel to the orthodontic bracket. Methods: This study evaluated 60 premolar teeth in 6 groups (n=10) as follows: (I) sound enamel, (II) demineralized enamel, (III) Nupro remineralizing agent (N), (IV) Nupro and CO2 laser (N/L), (V) Teethmate remineralizing agent (T), and (VI) Teethmate and CO2 laser (T/L). The remineralizing agents were applied to the enamel surfaces after their immersion in a demineralizing solution for 5 days. In groups IV and VI, the CO2 laser with a 10.6 ?m wavelength, 10 ms pulse duration, a 50 Hz repetition rate, 0.3 mm beam diameter and 0.7 W power was irradiated after applying the remineralizing agents. Brackets were bonded to the enamel surfaces and SBS was measured by a universal testing machine. For the assessment of enamel microhardness, 20 sections of molar teeth were divided into 4 groups (n=5; N, N/L, T, T/L) and their microhardness was measured before demineralization, after demineralization and after remineralization. X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM) and energy-dispersive spectrometry (EDS) were carried out to assess the formation of hydroxyapatite. The atomic percentages of the C, O, P, Ca, Na, Si, F and Ca/P ratio were determined by EDS analysis. Results: The SBS significantly decreased in group II (P<0.001). There was no significant difference among the groups I, III, IV, V and VI (P<0.05). This finding was similar to the microhardness results, which showed an increase in microhardness after remineralization (P<0.05), with no difference among the remineralizing agents. The Ca/P ratio was the highest in the Nupro group and the lowest in the demineralized group. Conclusion: Remineralizing agents can significantly improve the microhardness and structural properties of demineralized enamel to a level similar to that of sound enamel with no adverse effect on SBS to orthodontic brackets.
Project description:Based on three-dimensional scanning and computer-aided design and computer-aided manufacturing (CAD/CAM) techniques, customized bracket systems are increasingly used. However, data remain limited regarding customized bracket design, characteristics, and stability. This study was undertaken to evaluate the design, bond strength, and residual adhesives of four different CAD/CAM customized brackets that were attached to human tooth specimens by indirect bonding. Thirty extracted human upper premolars were divided into five groups: Group 1, preadjusted self-ligating labial metal bracket; Group 2, lingual self-ligating metal injection molding customized bracket; Group 3, gold-casted lingual customized bracket; Group 4, labial self-ligating milled customized bracket; Group 5, labial customized resin base bracket. Except in Group 1, premolar specimens were scanned via model scanner, and the images were sent to each manufacturing company to fabricate customized brackets and transfer trays/jigs. Debonding force (DF; N) was measured by Instron universal testing machine and shear bond strength (SBS; MPa) was calculated via dividing DF by bonding area. Adhesive remnants were analyzed via stereo microscopic images. Group 2 (196.90±82.75 N) exhibited significantly higher DF than Group 1 (62.77±12.65 N); other groups exhibited similar DFs, compared with Group 1. No customized bracket groups exhibited significant differences in SBS, relative to Group 1 (6.73±1.36 MPa). However, SBS in Group 5 (11.46±7.22 MPa) was significantly higher than in Group 3 (3.58±2.14 MPa). Group 3 had significantly lower ARI scores than other groups (P<0.05). Customized brackets exhibited large deviations in DF and SBS; all customized bracket systems exhibited DF that was equivalent or superior to that of preadjusted brackets, even when placed by indirect bonding.
Project description:A characteristic effect of a nano-concave-convex structure of a zirconia nanoparticle assembly with an inherent porous structure and huge surface area enabled us to introduce systematic surface modification by thermal treatment to smooth surface and polymer impregnation to mask the nano-concave-convex structure of the zirconia nanoparticle assembly. A polymer composite prepared from 30 wt% poly(N-isopropylacrylamide) containing 0.02 wt% zirconia nanoparticle assembly with the inherent nano-concave-convex surface structure showed the highest tensile strength in mechanical tensile testing. However, both sintered zirconia nanoparticle assembly with smooth surface and zirconia nanoparticle assemblies with polymer masked surface showed lower strength with longer elongation at break in mechanical tensile testing.
Project description:This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm) were randomly divided into 12 groups (n = 10) according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching) and different resin cements (Panavia F2.0; Superbond C and B) and whether or not a thermal cycling fatigue test (5°-55° for 5000 cycles) was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm). All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05). Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05). Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement.