Ontology highlight
ABSTRACT: Background
The deep peripheral fascia and epimysium are vital for muscle and tendon support, but their tight proton composition results in hypointense signals in conventional spin echo sequences. Ultrashort echo time (UTE) magnetic resonance imaging (MRI), using microsecond TE values, may visualize these structures. The purpose of this study was to evaluate whether UTE pulse sequence with a three-dimensional cone trajectory (3D UTE), with or without fat suppression (FS), can be used to visualize the fascia and epimysium using porcine lower legs as an example.Methods
The anterior soft tissues of porcine lower legs were dissected and partially separated into distinct layers to expose the deep peripheral fascia, epimysium, and muscle. Axial 3D UTE and 3D UTE FS imaging using dual-echo acquisition and echo subtraction were performed both before and after dissection. Prior to dissection, the thickness, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs) of structures believed to be deep peripheral fascia and epimysium were measured in both 3D UTE and 3D UTE FS. Post-dissection images were also analyzed to measure the SNRs and CNRs for the deep peripheral fascia and epimysium. Histological evaluations were carried out to verify the identities of the deep peripheral fascia and epimysium, as well as their thickness, and these measurements were compared to imaging findings.Results
In pre-dissection images obtained with 3D UTE and 3D UTE FS, both the deep peripheral fascia and epimysium exhibited high signal intensity. In the subtraction images, the mean thickness of the deep fascia was 0.87 mm, and that of the epimysium was 0.80 mm when imaged with 3D UTE. This is compared to measurements of 0.77 and 0.22 mm in 3D UTE FS, respectively. Histological analyses confirmed the thickness of the deep peripheral fascia and epimysium as 0.65 and 0.14 mm, respectively. In the post-dissection images, the deep fascia continued to display high signal intensity when compared with adjacent soft tissues, consistent with the histological findings. Meanwhile, the epimysium showed very low CNRs.Conclusions
3D UTE and 3D UTE FS can be used to visualize the deep peripheral fascia with high signal intensity and contrast but are insufficient to show signal intensity in the epimysium.
SUBMITTER: Hwang K
PROVIDER: S-EPMC10721985 | biostudies-literature | 2023 Dec
REPOSITORIES: biostudies-literature
Quantitative imaging in medicine and surgery 20231011 12
<h4>Background</h4>The deep peripheral fascia and epimysium are vital for muscle and tendon support, but their tight proton composition results in hypointense signals in conventional spin echo sequences. Ultrashort echo time (UTE) magnetic resonance imaging (MRI), using microsecond TE values, may visualize these structures. The purpose of this study was to evaluate whether UTE pulse sequence with a three-dimensional cone trajectory (3D UTE), with or without fat suppression (FS), can be used to v ...[more]