Unknown

Dataset Information

0

Fat suppression for ultrashort echo time imaging using a novel soft-hard composite radiofrequency pulse.


ABSTRACT: PURPOSE:To design a soft-hard composite pulse for fat suppression and water excitation in ultrashort echo time (UTE) imaging with minimal short T2 signal attenuation. METHODS:The composite pulse contains a narrow bandwidth soft pulse centered on the fat peak with a small negative flip angle (-?) and a short rectangular pulse with a small positive flip angle (?). The fat magnetization experiences both tipping-down and -back with an identical flip angle and thus returns to the equilibrium state, leaving only the excited water magnetization. Bloch simulations, as well as knee, tibia, and ankle UTE imaging studies, were performed to investigate the effectiveness of fat suppression and corresponding water signal attenuation. A conventional fat saturation (FatSat) module was used for comparison. Signal suppression ratio (SSR), defined as the ratio of signal difference between non-fat-suppression and fat-suppression images over the non-fat-suppression signal, was introduced to evaluate the efficiency of the composite pulse. RESULTS:Numerical simulations demonstrate that the soft-hard pulse has little saturation effect on short T2 water signals. Knee, tibia, and ankle UTE imaging results suggest that comparable fat suppression can be achieved with the soft-hard pulse and the FatSat module. However, much less water saturation is induced by the soft-hard pulse, especially for short T2 tissues, with SSRs reduced from 71.8 ± 6.9% to 5.8 ± 4.4% for meniscus, from 68.7 ± 5.5% to 7.7 ± 7.6% for bone, and from 62.9 ± 12.0% to 4.8 ± 3.2% for the Achilles tendon. CONCLUSION:The soft-hard composite pulse can suppress fat signals in UTE imaging with little signal attenuation on short T2 tissues.

SUBMITTER: Ma YJ 

PROVIDER: S-EPMC6717024 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fat suppression for ultrashort echo time imaging using a novel soft-hard composite radiofrequency pulse.

Ma Ya-Jun YJ   Jerban Saeed S   Jang Hyungseok H   Chang Eric Y EY   Du Jiang J  

Magnetic resonance in medicine 20190717 6


<h4>Purpose</h4>To design a soft-hard composite pulse for fat suppression and water excitation in ultrashort echo time (UTE) imaging with minimal short T<sub>2</sub> signal attenuation.<h4>Methods</h4>The composite pulse contains a narrow bandwidth soft pulse centered on the fat peak with a small negative flip angle (-α) and a short rectangular pulse with a small positive flip angle (α). The fat magnetization experiences both tipping-down and -back with an identical flip angle and thus returns t  ...[more]

Similar Datasets

| S-EPMC6476675 | biostudies-literature
| S-EPMC6435423 | biostudies-literature
| S-EPMC6691359 | biostudies-literature
| S-EPMC7924727 | biostudies-literature
| S-EPMC8376234 | biostudies-literature
| S-EPMC6414254 | biostudies-literature
| S-EPMC7375929 | biostudies-literature
| S-EPMC8076835 | biostudies-literature
| S-EPMC6443501 | biostudies-literature
| S-EPMC6996715 | biostudies-literature