Unknown

Dataset Information

0

Altered Phenotypes of Breast Epithelial × Breast Cancer Hybrids after ZEB1 Knock-Out.


ABSTRACT: ZEB1 plays a pivotal role in epithelial-to-mesenchymal transition (EMT), (cancer) cell stemness and cancer therapy resistance. The M13HS tumor hybrids, which were derived from spontaneous fusion events between the M13SV1-EGFP-Neo breast epithelial cells and HS578T-Hyg breast cancer cells, express ZEB1 and exhibit prospective cancer stem cell properties. To explore a possible correlation between the ZEB1 and stemness/ EMT-related properties in M13HS tumor hybrids, ZEB1 was knocked-out by CRISPR/Cas9. Colony formation, mammosphere formation, cell migration, invasion assays, flow cytometry and Western blot analyses were performed for the characterization of ZEB1 knock-out cells. The ZEB1 knock-out in M13HS tumor cells was not correlated with the down-regulation of the EMT-related markers N-CADHERIN (CDH2) and VIMENTIN and up-regulation of miR-200c-3p. Nonetheless, both the colony formation and mammosphere formation capacities of the M13HS ZEB1 knock-out cells were markedly reduced. Interestingly, the M13HS-2 ZEB1-KO cells harbored a markedly higher fraction of ALDH1-positive cells. The Transwell/ Boyden chamber migration assay data indicated a reduced migratory activity of the M13HS ZEB1-knock-out tumor hybrids, whereas in scratch/ wound-healing assays only the M13SH-8 ZEB1-knock-out cells possessed a reduced locomotory activity. Similarly, only the M13HS-8 ZEB1-knock-out tumor hybrids showed a reduced invasion capacity. Although the ZEB1 knock-out resulted in only moderate phenotypic changes, our data support the role of ZEB1 in EMT and stemness.

SUBMITTER: Merckens A 

PROVIDER: S-EPMC10744253 | biostudies-literature | 2023 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Altered Phenotypes of Breast Epithelial × Breast Cancer Hybrids after ZEB1 Knock-Out.

Merckens Alexander A   Sieler Mareike M   Keil Silvia S   Dittmar Thomas T  

International journal of molecular sciences 20231209 24


ZEB1 plays a pivotal role in epithelial-to-mesenchymal transition (EMT), (cancer) cell stemness and cancer therapy resistance. The M13HS tumor hybrids, which were derived from spontaneous fusion events between the M13SV1-EGFP-Neo breast epithelial cells and HS578T-Hyg breast cancer cells, express ZEB1 and exhibit prospective cancer stem cell properties. To explore a possible correlation between the ZEB1 and stemness/ EMT-related properties in M13HS tumor hybrids, ZEB1 was knocked-out by CRISPR/C  ...[more]

Similar Datasets

| S-EPMC2265538 | biostudies-literature
| S-EPMC6393568 | biostudies-literature
2018-04-25 | E-MTAB-5243 | biostudies-arrayexpress
| S-EPMC6050489 | biostudies-literature
| S-EPMC6890807 | biostudies-literature
| S-EPMC4749126 | biostudies-literature
| S-EPMC22848 | biostudies-literature
| S-EPMC1395308 | biostudies-literature
| EGAS00001002262 | EGA
| S-EPMC3979034 | biostudies-literature