Project description:Currently, drug resistance, especially against cephalosporins and carbapenems, among gram-negative bacteria is an important challenge, which is further enhanced by the limited availability of drugs against these bugs. There are certain antibiotics (colistin, fosfomycin, temocillin, and rifampicin) that have been revived from the past to tackle the menace of superbugs, including members of Enterobacteriaceae, Acinetobacter species, and Pseudomonas species. Very few newer antibiotics have been added to the pool of existing drugs. There are still many antibiotics that are passing through various phases of clinical trials. The initiative of Infectious Disease Society of America to develop 10 novel antibiotics against gram-negative bacilli by 2020 is a step to fill the gap of limited availability of drugs. This review aims to provide insights into the current and newer drugs in pipeline for the treatment of gram-negative bacteria and also discusses the major challenging issues for their management.
Project description:Antimicrobial peptides (AMPs) are ubiquitous amongst living organisms and are part of the innate immune system with the ability to kill pathogens directly or indirectly by modulating the immune system. AMPs have potential as a novel therapeutic against bacteria due to their quick-acting mechanism of action that prevents bacteria from developing resistance. Additionally, there is a dire need for therapeutics with activity specifically against Gram-negative bacterial infections that are intrinsically difficult to treat, with or without acquired drug resistance. Development of new antibiotics has slowed in recent years and novel therapeutics (like AMPs) with a focus against Gram-negative bacteria are needed. We designed eight novel AMPs, termed PHNX peptides, using ab initio computational design (database filtering technology combined with the novel positional analysis on APD3 dataset of AMPs with activity against Gram-negative bacteria) and assessed their theoretical function using published machine learning algorithms, and finally, validated their activity in our laboratory. These AMPs were tested to establish their minimum inhibitory concentration (MIC) and half-maximal effective concentration (EC50) under CLSI methodology against antibiotic resistant and antibiotic susceptible Escherichia coli and Staphylococcus aureus. Laboratory-based experimental results were compared to computationally predicted activities for each of the peptides to ascertain the accuracy of the computational tools used. PHNX-1 demonstrated antibacterial activity (under high and low-salt conditions) against antibiotic resistant and susceptible strains of Gram-positive and Gram-negative bacteria and PHNX-4 to -8 demonstrated low-salt antibacterial activity only. The AMPs were then evaluated for cytotoxicity using hemolysis against human red blood cells and demonstrated some hemolysis which needs to be further evaluated. In this study, we successfully developed a design methodology to create synthetic AMPs with a narrow spectrum of activity where the PHNX AMPs demonstrated higher antibacterial activity against Gram-negative bacteria compared to Gram-positive bacteria. Thus, these peptides present novel synthetic peptides with a potential for therapeutic use. Based on our findings, we propose upfront selection of the peptide dataset for analysis, an additional step of positional analysis to add to the ab initio database filtering technology (DFT) method, and we present laboratory data on the novel, synthetically designed AMPs to validate the results of the computational approach. We aim to conduct future in vivo studies which could establish these AMPs for clinical use.
Project description:Antimicrobial peptides (AMPs) are integral components of innate immunity and are typically found in combinations in which they can synergize for broader-spectrum or more potent activity. Previously, we reported peptoid mimics of AMPs with potent and selective antimicrobial activity. Using checkerboard assays, we demonstrate that peptoids and AMPs can interact synergistically, with fractional inhibitory concentration indices as low as 0.16. These results strongly suggest that antimicrobial peptoids and peptides are functionally and mechanistically analogous.
Project description:Antimicrobial peptides (AMPs) and proteins are important components of innate immunity against pathogens in insects. The production of AMPs is costly owing to resource-based trade-offs, and strategies maximizing the efficacy of AMPs at low concentrations are therefore likely to be advantageous. Here, we show the potentiating functional interaction of co-occurring insect AMPs (the bumblebee linear peptides hymenoptaecin and abaecin) resulting in more potent antimicrobial effects at low concentrations. Abaecin displayed no detectable activity against Escherichia coli when tested alone at concentrations of up to 200 μM, whereas hymenoptaecin affected bacterial cell growth and viability but only at concentrations greater than 2 μM. In combination, as little as 1.25 μM abaecin enhanced the bactericidal effects of hymenoptaecin. To understand these potentiating functional interactions, we investigated their mechanisms of action using atomic force microscopy and fluorescence resonance energy transfer-based quenching assays. Abaecin was found to reduce the minimal inhibitory concentration of hymenoptaecin and to interact with the bacterial chaperone DnaK (an evolutionarily conserved central organizer of the bacterial chaperone network) when the membrane was compromised by hymenoptaecin. These naturally occurring potentiating interactions suggest that combinations of AMPs could be used therapeutically against Gram-negative bacterial pathogens that have acquired resistance to common antibiotics.
Project description:Immune deficiency (IMD) is a death domain-containing protein that is essential for the IMD/NF-κB humoral and epithelial immune responses to Gram-negative bacteria and viruses in insects. In the immune signaling cascade, IMD is recruited together with FADD and the caspase DREDD after the mobilization of PGRP receptors. Activated IMD regulates the expression of effector antimicrobial peptides (AMP) that protect against invading microorganisms. To date, most studies of the IMD pathway, and the IMD gene in particular, have been restricted to Drosophila; few similar studies have been conducted in other model insects. Herein, we cloned and functionally characterized an IMD homolog from the mealworm beetle Tenebrio molitor (TmIMD) and studied its role in host survival in the context of pathogenic infections. Phylogenetic analysis revealed the conserved caspase cleavage site and inhibitor of apoptosis (IAP)-binding motif (IBM). TmIMD expression was high in the hemocytes and Malpighian tubules of Tenebrio late-instar larvae and adults. At 3 and 6 hours' post-infection with Escherichia coli, Staphylococcus aureus, or Candida albicans, TmIMD expression significantly increased compared with mock-infected controls. Knockdown of the TmIMD transcript by RNAi significantly reduced host resistance to the Gram-negative bacterium E. coli and fungus C. albicans in a survival assay. Strikingly, the expression of nine T. molitor AMPs (TmTenecin1, TmTenecin2, TmTenecin4, TmDefensin2, TmColeoptericin1, TmColeoptericin2, TmAttacin1a, TmAttacin1b, and TmAttacin2) showed significant downregulation in TmIMD knockdown larvae challenged with E. coli. These results suggest that TmIMD is required to confer humoral immunity against the Gram-negative bacteria, E. coli by inducing the expression of critical transcripts that encode AMPs.
Project description:Antimicrobial peptides (AMPs), which are evolutionarily conserved components of the innate immune response, contribute to the first line of defense against microbes in the skin and at mucosal surfaces. Here, we report the identification of a human peptide, encoded by the chromosome 5 open reading frame 46 (C5orf46) gene, as a type of AMP, which we termed antimicrobial peptide with 64 amino acid residues (AP-64). AP-64 is an anionic amphiphilic peptide lacking cysteines (MW = 7.2, PI = 4.54). AP-64 exhibited significant antibacterial activity against Gram-negative bacteria, including Escherichia coli DH5α, Escherichia coli O157:H7, Vibrio cholerae, and Pseudomonas aeruginosa. Moreover, AP-64 was efficient in combating Escherichia coli O157:H7 infections in a mouse model and exhibited cytotoxic effects against human T-cell lymphoma Jurkat and B-cell lymphoma Raji cells. We also observed that Gm94, encoded by mouse C5orf46 homologous gene, closely resembles AP-64 in its antibacterial properties. Compared with other human AMPs, AP-64 has distinct characteristics, including a longer sequence length, absence of cysteine residues, a highly anionic character, and cell toxicity. Together, this study identified that AP-64 is an AMP worthy of further investigation.
Project description:Antimicrobial peptides are a rich source of potential antibiotic candidates. The tridecaptins, a family of linear lipo-tridecapeptides, are easily synthesized and show strong activity against Gram-negative bacteria. However, their composition includes several expensive amino acids, such as d/l diaminobutyric acid and d-allo-isoleucine, significantly increasing their cost of synthesis. Herein, we report a series of new tridecaptin derivatives that are much cheaper to synthesize and retain strong activity against multidrug-resistant Gram-negative bacteria.
Project description:The antimicrobial activity of citric acid (CA) is often evaluated without pH adjustment or control and its impact on micro-organisms is better understood in acidic conditions. However, the biocidal action of the fully ionized CA molecule, predominantly available at higher pH, has not been previously investigated. The objective of this study was to evaluate the antimicrobial effect of high (10%) and low (1%) concentrations of CA, each adjusted over a wide range of pH values (4·5, 6·5 and 9·5) relative to the controls exposed to corresponding pH levels alone (no CA). The viability and morphology of Escherichia coli and Klebsiella aerogenes were evaluated using a culture-based enumeration assay in parallel with direct SEM imaging. Overall, the highest membrane damage and loss in viability were achieved with 10% CA at pH 9·5, which yielded at least 4·6 log10 CFU per ml (P < 0·001) reductions in both organisms. Insight into the superior efficacy of CA at high pH is proposed based on zeta potential measurements which reveal a more negatively charged bacterial surface at higher pH. This pH-dependent increase in surface charge may have rendered the cells potentially more sensitive towards chelants such as CA3- that interact with membrane-stabilizing divalent metals.
Project description:From a global view of antimicrobial resistance over different sectors, seafood and the marine environment are often considered as potential reservoirs of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs); however, there are few studies and sparse results on this sector. This study aims to provide new data and insights regarding the content of resistance markers in various seafood samples and sources, and therefore the potential exposure to humans in a global One Health approach. An innovative high throughput qPCR screening was developed and validated in order to simultaneously investigate the presence of 41 ARGs and 33 MGEs including plasmid replicons, integrons, and insertion sequences in Gram-negative bacteria. Analysis of 268 seafood isolates from the bacterial microflora of cod (n = 24), shellfish (n = 66), flat fishes (n = 53), shrimp (n = 10), and horse mackerel (n = 115) show the occurrence of sul-1, ant(3″)-Ia, aph(3')-Ia, strA, strB, dfrA1, qnrA, and blaCTX-M-9 genes in Pseudomonas spp., Providencia spp., Klebsiella spp., Proteus spp., and Shewanella spp. isolates and the presence of MGEs in all bacterial species investigated. We found that the occurrence of MGE may be associated with the seafood type and the environmental, farming, and harvest conditions. Moreover, even if MGE were detected in half of the seafood isolates investigated, association with ARG was only identified for twelve isolates. The results corroborate the hypothesis that the incidence of antimicrobial-resistant bacteria (ARB) and ARG decreases with increasing distance from potential sources of fecal contamination. This unique and original high throughput micro-array designed for the screening of ARG and MGE in Gram-negative bacteria could be easily implementable for monitoring antimicrobial resistance gene markers in diverse contexts.
Project description:Brassica oleracea L is low in carbohydrates and fiber, making it ideal for low-carb diets. But they are rich in vitamins, minerals, and other essential nutrients. The present article investigated the antimicrobial effect of B. oleracea extract (white and broccoli) (BOE-WB) on Gram-positive and Gram-negative strains and its resistance to doxycycline. BOE-WB was used as the soaking method. It was analyzed by gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography (HPLC), and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) methods. The samples were prepared with three concentrations. It used Mueller Hinton Agar culture medium of fresh bacteria. It was incubated for 24 h in a 37°C incubator. It identified 33 compounds. For BOE-W, 77% of the compounds are oxygenated, while for BOE-B, this percentage is 79%. For BOE-B, 79% had oxygenated compounds. BOE-WB has significant antibacterial effects on Pseudomonas aerogenosa and Bacillus cereus. The lethal impact of BOE-WB on strains is very close to that of doxycycline, and it can be introduced as a new antimicrobial drug to the medical world. The research shows that the percentage of oxygenated compounds in foods containing BOE-B is much higher than that of BOE-W. It has a significant impact on the antioxidant effect. Foods containing BOE-W have a high percentage of azo compounds and sulfur. One of the benefits of sulfur in the body is disinfecting the blood. In addition, sulfur increases the body's resistance to bacteria.