Project description:Stable tris(trichlorophenyl)methyl radicals have gained interest as all-organic bioimaging agents combining fluorescent and paramagnetic properties. However, cellular uptake has so far only been reported for nanoparticles, because molecular hydrophobic trityl radicals are not soluble in aqueous media. Here, we report the synthesis and characterization of new water-soluble tris(trichlorophenyl)methyl radical derivatives exhibiting red doublet emission. Solubility in water is achieved through functionalization with oligoethylene glycol (OEG) chains. The emission behavior of OEG functionalized trityl radicals is studied in polar environments. Donor-functionalization with carbazole evokes a charge-transfer excited state that is efficiently quenched in polar solvents. In contrast, click-reaction mediated attachment of OEG-azide and trityl acetylene furnishes a triazole functionalized radical with locally excited states and emission in water. Confocal fluorescence microscopy proves successful uptake of the material by macrophages in cell culture, showing the potential of our water soluble trityl radical for fluorescence bioimaging.
Project description:During protein synthesis, the nascent peptide chain traverses the peptide exit tunnel of the ribosome. We monitor the co-translational movement of the nascent peptide using a fluorescent probe attached to the N-terminus of the nascent chain. Due to fluorophore quenching, the time-dependent fluorescence signal emitted by an individual peptide is determined by co-translational events, such as secondary structure formation and peptide-tunnel interactions. To obtain information on these individual events, the measured ensemble fluorescence signal has to be decomposed into position-dependent intensities. Here, we describe mRNA translation as a Markov process with specific fluorescence intensities assigned to the different states of the process. Combining the computed stochastic time evolution of the translation process with a sequence of observed ensemble fluorescence time courses, we compute the unknown position-specific intensities and obtain detailed information on the kinetics of the translation process. In particular, we find that translation of poly(U) mRNAs dramatically slows down at the fourth UUU codon. The method presented here detects subtle differences in the position-specific fluorescence intensities and thus provides a novel approach to study translation kinetics in ensemble experiments.
Project description:Progress in genomics and proteomics attended to the door for better understanding the recent rapid expanding complex research field of metabolomics. This trend in biomedical research increasingly focuses to the development of patient-specific therapeutic approaches with higher efficiency and sustainability. Simultaneously undesired adverse reactions are avoided. In parallel, the development of molecules for molecular imaging is required not only for the imaging of morphological structures but also for the imaging of metabolic processes like the aberrant expression of the cysteine protease cathepsin B (CtsB) gene and the activity of the resulting product associated with metastasis and invasiveness of malign tumors. Finally the objective is to merge imaging and therapy at the same level. The design of molecules which fulfil these responsibilities is pivotal and requires proper chemical methodologies. In this context our modified solid phase peptide chemistry using temperature shifts during synthesis is considered as an appropriate technology. We generated highly variable conjugates which consist of molecules useful as diagnostically and therapeutically active molecules. As an example the modular PNA products with the complementary sequence to the CtsB mRNA and additionally with a cathepsin B cleavage site had been prepared as functional modules for distinction of cell lines with different CtsB gene expression. After ligation to the modular peptide-based BioShuttle carrier, which was utilized to facilitate the delivery of the functional modules into the cells' cytoplasm, the modules were scrutinized.
Project description:Novel fluorescent strigolactone derivatives that contain the piperidine-substituted 1,8-naphthalimide ring system connected through an ether link to a bioactive 3-methyl-furan-2-one unit were synthesized and their spectroscopic properties investigated. The solvatochromic behavior of these piperidine-naphthalimides was monitored in solvents of different polarity using the electronic absorption and fluorescence spectra. These compounds exhibited a strong positive solvatochromism taking into account the change of solvent polarity, and the response mechanism was analyzed by fluorescence lifetime measurements. According to Catalan and [f(n), f(ε), β, α] solvent scales, the dipolarity and polarizability are relevant to describe the solute-solvent interactions. The emission chemosensing activity was discussed in order to determine the water content in organic environments. The emission intensity of these compounds decreased rapidly in dioxane, increasing water level up to 10%. Measuring of quantum yield indicated that the highest values of quantum efficiency were obtained in nonpolar solvents, while in polar solvents these derivatives revealed the lowest quantum yield. The fluorescence decay can be described by a monoexponential model for low water levels, and for higher water contents a biexponential model was valid.
Project description:We developed an approach utilizing nanoscale vesicles extracted from brain regions combined with single molecule imaging to monitor how an animal's physiological condition regulates the dynamics of protein distributions in different brain regions. This method was used to determine the effect of nicotine on the distribution of receptor stoichiometry in different mouse brain regions. Nicotine-induced upregulation of α4β2 nicotinic acetylcholine receptors (nAChRs) is associated with changes in their expression, trafficking, and stoichiometry. The structural assembly of nAChRs has been quantified in cell culture based systems using single molecule techniques. However, these methods are not capable of quantifying biomolecule assembly that takes place in a live animal. Both nicotine-induced upregulation and changes in nAChR stoichiometry differ across brain regions. Our single molecule approach revealed that nicotine acts differentially across brain regions to alter assembly in response to exposure and withdrawal.
Project description:In this study, two series of 3-oxo-3H-benzo[f]chromene-2-carboxylic acid derivatives (compounds 5a-i and 6a-g) were synthesized. Their in vitro proliferation inhibitory activities against the A549 and NCI-H460 human non-small cell lung cancer (NSCLC) cell lines were evaluated. Their photophysical properties were measured. Among these target compounds, 5e exhibited the strongest antiproliferative activity by inducing apoptosis, arresting cell cycle, and elevating intracellular reactive oxygen species (ROS) level, suggesting that it may be a potent antitumor agent. In addition, compound 6g with very low cytotoxicity, demonstrated excellent fluorescence properties, which could be used as an effective fluorescence probe for biological imaging.
Project description:Cell states are regulated by extrinsic signals from various external factors such as intercellular interactions, and intrinsic gene expression. Although comprehensive cell state profiling has been attempted, it remains simultaneous analysis of signal activation has still been challenging. Multiplexed imaging is a technique acquiring multiple protein information at a single cell level as traditional immunofluorescence. However, the method often compromises resolution, hindering the analysis of intracellular localization dynamics and post-translational modifications of proteins. To address these limitations, we developed an erasable fluorescence method using disulfide linkers to label antibodies. We term these antibodies ‘Precise Emission Canceling Antibodies (PECAbs)’. PECAb allows for high-resolution iterative imaging with minimal non-specific binding. Automation enables our system to achieve reproducible quantitative analysis using 206 antibodies. The resulting quantitative data allow reconstruction of the spatiotemporal dynamics of signaling pathways over both long and short timescales. Additionally, combining this approach with sequential RNA-FISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system serves as a comprehensive platform for analyzing complex cell processes, from signal transduction to gene expression.
Project description:Cell states are regulated by extrinsic signals from various external factors such as intercellular interactions, and intrinsic gene expression. Although comprehensive cell state profiling has been attempted, it remains simultaneous analysis of signal activation has still been challenging. Multiplexed imaging is a technique acquiring multiple protein information at a single cell level as traditional immunofluorescence. However, the method often compromises resolution, hindering the analysis of intracellular localization dynamics and post-translational modifications of proteins. To address these limitations, we developed an erasable fluorescence method using disulfide linkers to label antibodies. We term these antibodies ‘Precise Emission Canceling Antibodies (PECAbs)’. PECAb allows for high-resolution iterative imaging with minimal non-specific binding. Automation enables our system to achieve reproducible quantitative analysis using 206 antibodies. The resulting quantitative data allow reconstruction of the spatiotemporal dynamics of signaling pathways over both long and short timescales. Additionally, combining this approach with sequential RNA-FISH can effectively classify cells and identify their signal activation states in human tissue. Overall, the PECAb system serves as a comprehensive platform for analyzing complex cell processes, from signal transduction to gene expression.
Project description:The development of nanomaterials with special optical window is critical for clinical applications and the optoelectronic industry. In this work, eight kinds of samarium-based metal organic compound nanoparticles (Sm-Fe, Sm-Ga, Sm-Mn, Sm-Na, Sm-Nb, Sm-W, Sm-Cu, and Sm-Al) were synthesized through a solution method. They show polychromatic-photoluminescence spectra extended from the UV to near-infrared (NIR) region when excited by 280 nm, 380 nm, 480 nm, 580 nm, and 785 nm light. They emit direct white light with respect to UV excitation. Tunable white-to-green fluorescence can be achieved by variation of excitation light around 300-400 nm. When they are excited by a 785 nm light source, they show intense fluorescence around 800-1100 nm, which is promising for NIR bio-imaging. Their application in multicolor ultra-wide-range bio-tissue fluorescence imaging is demonstrated by UV (359-371 nm), blue (450-490 nm), green (540-552 nm), and NIR light (central wavelength = 785 nm) excitation with pig kidney tissue samples.