Project description:At the turn of the last century, the emerging field of medical oncology chose a cytotoxic approach to cancer therapy over an immune-centered approach at a time when evidence in support of either paradigm did not yet exist. Today, nearly 120 years of data have established that (a) even the best cytotoxic regimens only infrequently cure late-stage malignancy and (b) strategies that supplement and augment existing antitumor immune responses offer the greatest opportunities to potentiate durable remission in cancer. Despite widespread acceptance of these paradigms today, the ability of the immune system to recognize and fight cancer was a highly controversial topic for much of the twentieth century. Why this modern paradigmatic mainstay should have been both dubious and controversial for such an extended period is a topic of considerable interest that merits candid discussion. Herein, we review the literature to identify and describe the watershed events that ultimately led to the acceptance of immunotherapy as a viable regimen for the treatment of neoplastic malignancy. In addition to noting important clinical discoveries, we also focus on research milestones and the development of critical model systems in rodents and dogs including the advanced modeling techniques that allowed development of patient-derived xenografts. Together, their use will further our understanding of cancer biology and tumor immunology, allow for a speedier assessment of the efficacy and safety of novel approaches, and ultimately provide a faster bench to beside transition.
Project description:Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Project description:BackgroundColorectal cancer (CRC) is a leading cause of cancer-related deaths globally. The heterogeneity of the tumor microenvironment significantly influences patient prognosis, while the diversity of tumor cells shapes its unique characteristics. A comprehensive analysis of the molecular profile of tumor cells is crucial for identifying novel molecular targets for drug sensitivity analysis and for uncovering the pathophysiological mechanisms underlying CRC.MethodsWe utilized single-cell RNA sequencing technology to analyze 13 tissue samples from 4 CRC patients, identifying key cell types within the tumor microenvironment. Intercellular communication was assessed using CellChat, and a risk score model was developed based on eight prognostic genes to enhance patient stratification for immunotherapeutic approaches. Additionally, in vitro experiments were performed on DLX2, a gene strongly associated with poor prognosis, to validate its potential role as a therapeutic target in CRC progression.ResultsEight major cell types were identified across the tissue samples. Within the tumor cell population, seven distinct subtypes were recognized, with the C0 FXYD5+ tumor cells subtype being significantly linked to cancer progression and poor prognosis. CellChat analysis indicated extensive communication among tumor cells, fibroblasts, and immune cells, underscoring the complexity of the tumor microenvironment. The risk score model demonstrated high accuracy in predicting 1-, 3-, and 5-year survival rates in CRC patients. Enrichment analysis revealed that the C0 FXYD5+ tumor cell subtype exhibited increased energy metabolism, protein synthesis, and oxidative phosphorylation, contributing to its aggressive behavior. In vitro experiments confirmed DLX2 as a critical gene associated with poor prognosis, suggesting its viability as a target for improving drug sensitivity.ConclusionIn summary, this study advances our understanding of CRC progression by identifying critical tumor subtypes, molecular pathways, and prognostic markers that can inform innovative strategies for predicting and enhancing drug sensitivity. These findings hold promise for optimizing immunotherapeutic approaches and developing new targeted therapies, ultimately aiming to improve patient outcomes in CRC.
Project description:Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Project description:Breast cancer (BCa) has long been a health burden to women across the globe. However, the burden is not equally carried across races. Though the manifestation and behavior of BCa differs among racial groups, the racial representation of models used in preclinical trials and clinical trial participants lacks this heterogeneity. Women of African Ancestry (WAA) are disproportionately afflicted by having an increased risk of developing BCas that are more aggressive in nature, and consequently suffer from poorer outcomes relative to women of European ancestry (WEA). Notwithstanding this, one of the most commonly used tools in studying BCa, cell lines, exhibit a sizeable gap in cell line derivatives of WEA relative to WAA. In this review, we summarize the available BCa cell lines grouped by race by major suppliers, American Type Culture Collection (ATCC) and the European Collection of Authenticated Cell Cultures (ECACC). Next, examined the enrollment of WAA in clinical trials for BCa. Of the cell lines found provided by ATCC and ECACC, those derived from WEA constituted approximately 80% and 94%, respectively. The disparity is mirrored in clinical trial enrollment where, on average, WEA made up more than 70% of participants in trials found where ancestry information was provided. As both experimental models and clinical trial participants primarily consist of WEA, results may have poorer translatability toward other races. This highlights the need for greater racial diversity at the preclinical and clinical levels to more accurately represent the population and strengthen the translatability of results.
Project description:In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Project description:BackgroundEarly warning systems lack robust evidence that they improve patients' outcomes, possibly because of their limitation of predicting binary rather than time-to-event outcomes.ObjectivesTo compare the prediction accuracy of 2 statistical modeling strategies (logistic regression and Cox proportional hazards regression) and 2 machine learning strategies (random forest and random survival forest) for in-hospital cardiopulmonary arrest.MethodsRetrospective cohort study with prediction model development from deidentified electronic health records at an urban academic medical center.ResultsThe classification models (logistic regression and random forest) had statistical recall and precision similar to or greater than those of the time-to-event models (Cox proportional hazards regression and random survival forest). However, the time-to-event models provided predictions that could potentially better indicate to clinicians whether and when a patient is likely to experience cardiopulmonary arrest.ConclusionsAs early warning scoring systems are refined, they must use the best analytical methods that both model the underlying phenomenon and provide an understandable prediction.
Project description:The term "cancer stem cells" (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Project description:The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy among females worldwide. The concordance of more than 70% of AR expression in primary and metastatic breast tumors implies that AR may be a new marker and a potential therapeutic target among AR-positive breast cancer patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. AR exhibits different behavior depending on the breast cancer subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since the prognostic and predictive value of AR positivity remains uncertain, it is difficult to identify and stratify patients that would benefit from AR-targeted therapies. Herein, through a review of preclinical studies, clinical studies, and clinical trials, we summarize the biology of AR, its prognostic and predictive value, as well as its therapeutic implications by breast cancer molecular subtype.