Project description:A highly enantioselective hydroamination/N-sulfonyliminium cyclization cascade is reported using a combination of gold(I) and chiral phosphoric acid catalysts. An initial 5-exo-dig hydroamination and a subsequent phosphoric acid catalyzed cyclization process provide access to complex sulfonamide scaffolds in excellent yield and high enantiocontrol. The method can be extended to lactam derivatives, with excellent yields and enantiomeric excesses of up to 93% ee.
Project description:An enantioselective arylation-cyclization cascade has been accomplished using a combination of diaryliodonium salts and asymmetric copper catalysis. These mild catalytic conditions provide a new strategy for the enantioselective construction of pyrroloindolines, an important alkaloid structural motif that is commonly found among biologically active natural products.
Project description:Enantioselective control of the chirality of a tertiary ?-carbon in the products of a Nazarov cyclization of enones is challenging because the reaction involves an enantioselective proton transfer process. We herein report the use of cooperative catalysis using Lewis acids and chiral Brønsted acids to control the stereochemistry of the tertiary ?-carbon in the products of this reaction. Specifically, with ZnCl2 and a chiral spiro phosphoric acid as catalysts, we realized the first enantioselective construction of cyclopenta[b]indoles with chiral tertiary ?-carbons via Nazarov cyclization of indole enone substrates with only one coordinating site. Mechanistic studies revealed that the chiral spiro phosphoric acid acts as a multifunctional catalyst: it co-catalyzes the cyclization of the dienone and enantioselectively catalyzes a proton transfer reaction of the enol intermediate. This new strategy of enantioselective control by means of cooperative catalysis may show utility for other challenging asymmetric cyclization reactions.
Project description:An investigation of the mechanism of benzoic acid/thiourea co-catalysis in the asymmetric Pictet-Spengler reaction is reported. Kinetic, computational, and structure-activity relationship studies provide evidence that rearomatization via deprotonation of the pentahydro-β-carbolinium ion intermediate by a chiral thiourea·carboxylate complex is both rate- and enantioselectivity-determining. The thiourea catalyst induces rate acceleration over the background reaction mediated by benzoic acid alone by stabilizing every intermediate and transition state leading up to and including the final selectivity-determining step. Distortion-interaction analyses of the transition structures for deprotonation predicted using density functional theory indicate that differential π-π and C-H···π interactions within a scaffold organized by multiple hydrogen bonds dictate stereoselectivity. The principles underlying rate acceleration and enantiocontrol described herein are expected to have general implications for the design of selective transformations involving deprotonation of high-energy intermediates.
Project description:A highly efficient catalytic enantioselective [4+2] cycloaddition was developed between 2-benzothiazolimines and enecarbamates. A wide range of benzothiazolopyrimidines bearing three contiguous stereogenic centers was obtained in high to excellent yields and with excellent diastereo- and enantioselectivities (d.r. > 98?:?2 and up to >99% ee). Furthermore, this chiral phosphoric acid-catalyzed strategy was scalable and enabled access to a new class of optically pure Lewis base isothiourea derivatives.
Project description:A chiral N,N'-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels-Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines.
Project description:Chiral phosphorous-containing compounds are playing a more and more significant role in several different research fields. Here, we show a chiral phosphoric acid-catalyzed enantioselective phosphinylation of 3,4-dihydroisoquinolines with diarylphosphine oxides for the efficient and practical construction of a family of chiral α-amino diarylphosphine oxides with a diverse range of functional groups. The phosphine products are suitable for transforming to several kinds of chiral (thio)ureas, which might be employed as chiral ligands or catalysts with potential applications in asymmetric catalysis. Control and NMR tracking experiments show that the reaction proceeds via the tert-butyl 1-(tert-butoxy)-3,4-dihydroiso-quinoline-2(1H)-carboxylate intermediate, followed by C-P bond formation. Furthermore, computational studies elucidated that the hydrogen bonding strength between the phosphonate and isoquinolinium determines the stereoselectivity of the phosphinylation reaction.
Project description:Reported is the enantioselective synthesis of tetracyclic indolines using silver(I)/chiral phosphoric acid catalysis. A variety of alkyne-tethered indoles are suitable for this process. Mechanistic studies suggest that the in situ generated silver(I) chiral phosphate activates both the alkyne and the indole nucleophile in the initial cyclization step through an intermolecular hydrogen bond and the phosphate anion promotes proton transfer. In addition, further modifications of the cyclization products enabled stereochemistry-function studies of a series of bioactive indolines.
Project description:Herein, the biogenesis of the hydrindane ring system within coronafacic acid (CFA) has been investigated. These studies reveal that in addition to the canonical polyketide chain elongation and functionalization encoded by type I polyketide synthase (PKSs), cascade reactions can take place during assembly line-like biosynthesis. Indeed, upon Cfa7-catalyzed Claisen condensation between enzyme-bound malonate and an N-acetylcysteamine (SNAC) thioester, latent reactivity within the elongated enzyme-bound intermediate is unveiled. This reactivity translates into an intramolecular cyclization, which can proceed in a facile manner as observed by the enzyme-independent cyclization of a linear beta-ketothioester intermediate.