Project description:Dispersal capability often decides the geographical distribution and long-term success of a species. In this investigation, Pontodrilus litoralis, a widely distributed species along shores throughout mid- and low latitudes of the world, was investigated. We tested three hypotheses explaining its dispersal: helped by humans, transported by birds and carried by currents. Although the earthworms seemed to be associated with artificially planted wind-breaking woods and mangroves along the west coast of Taiwan, they were also found on isolated beaches in the Pescadores Islands without such plantings. They are approximately 2 mm wide, making them too small for use as fishing bait. These two mechanisms invoking human help were not supported. In a laboratory experiment, we moved the earthworms to the plumage of various body parts of pigeons, and they dropped off or died within a short time, a result incompatible with the bird hypothesis. The earthworms stayed alive and grew when immersed in freshwater or seawater for at least a month. They also survived on floating wood in an in situ experiment lasting approximately two months. Thus, the current hypothesis was the only one we were unable to falsify; driftwood and perhaps wooden vessels could provide both food and transport on long journeys. Wood boats exist for a short time on an evolutionary time scale, but it may be long enough to disperse the earthworm around the world. The phase-out of wood boats, thus, may start the divergence of P. litoralis populations around the world.
Project description:The luminous earthworm Pontodriluslitoralis (Grube, 1855) occurs in a very wide range of subtropical and tropical coastal areas. Morphometrics on size variation (number of segments, body length and diameter) and genetic analysis using the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequence were conducted on 14 populations of P.litoralis from Southeast Asia and Japan. Statistical inference on morphometric data revealed significantly different size variations in the body length and diameter among these 14 populations of P.litoralis. However, discordance between the morphometric and mitochondrial COI gene-based phylogenetic analyses was evident, where the size variations in P.litoralis showed a different pattern from the COI genetic differences. The update on the current distribution of P.litoralis is reported and revealed different aspects of the littoral habitat characteristics between Southeast Asia and Japan.
Project description:The hesionid polychaete genera Oxydromus Grube, 1855 and Ophiodromus Sars, 1862 have been regarded as synonyms with the former considered as invalid since it was thought to be a junior homonym of Oxydromus Schlegel, 1854. However, Schlegel's name is an incorrect subsequent spelling for Ocydromus Wagler, 1830 (Aves, Gruiformes, Rallidae) and is not an available name. Consequently, Oxydromus Grube, 1855 must be reinstated for this hesionid polychaete genus. A check-list of valid species of Oxydromus including 30 new combinations is provided.
Project description:Pontodrilus litoralis is a cosmopolitan littoral earthworm known to exhibit bioluminescence. Recently, a congeneric species, Pontodrilus longissimus, from Thailand was described. These species are sympatric, but their burrowing depths on Thai beaches are different. In this study, we examined the in vivo and in vitro bioluminescent properties of P. longissimus and P. litoralis. Mechanical stimulation induced in vivo luminescence in P. litoralis, as reported previously, but not in P. longissimus. In vitro cross-reaction tests between these species revealed the absence of luciferin and luciferase activities in P. longissimus. The coelomic fluid of P. litoralis had strong fluorescence that matched the spectral maximum of its bioluminescence, but the same result was not observed for P. longissimus. These results suggest that P. litoralis has luminescence abilities due to the creation of bioluminescent components (i.e., luciferin, luciferase, and light emitters). The presence of both luminous and nonluminous species in a single genus is likely widespread, but only a few examples have been confirmed. Our findings provide insight into the possible functions of bioluminescence in earthworms, such as avoiding predation by littoral earwigs.
Project description:Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, "tip to root", for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg's reciprocal monophyly, (P(AB)),1 (2) Rodrigo's (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule-coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits might be drawn. In the species cases here, the results clearly indicate that there is a need for more gene sampling to substantiate either the new cohort of species indicated for B. tabaci or to detect the established subspecies taxonomy of L. dispar. Given the ease of use through the Geneious species delimitation plugins, similar analysis of such multi-gene datasets would be easily accommodated. Overall, the tip to root approach described here is recommended where careful consideration of species delimitation is required to support crucial biosecurity decisions based on accurate species identification.
Project description:The cosmopolitan littoral earthworm Pontodrilus litoralis is distributed in tropical and sub-tropical coastal habitats, whereas P. longissimus is reported only in the Thai-Malay coastal line. In the present study, we examined the difference in salinity effect on the survival rate, wet weight (hereafter weight) change, behaviour, and osmolality of these two Pontodrilus species. A 28 d exposure to varying salinity concentration (0-50 ppt) revealed that P. litoralis is able to survive over a wide salinity range than P. longissimus, with the latter species exhibiting a low survival rate over the same salinity range. During short-term exposure (0-96 h) to a salinity of less than 30 ppt, P. litoralis exhibited weight gain and this was significant in the first 12 h of exposure. However, P. longissimus gained weight when exposed to salinity at under 10 ppt in the first 72 h of exposure. The two species of Pontodrilus behaved differently when exposed to different salinities. The coelomic fluid osmolarity of Pontodrilus was related to the exposure medium and was mostly maintained as hyperosmotic to the external medium over the range of salinities tested. This study shows how two different species of the littoral earthworm genus Pontodrilus respond to a change in salinity, which may explain their dispersal pattern and shape their distribution pattern throughout Southeast Asia.
Project description:Intricate species delimitation in Gynoxys (Senecioneae, Asteraceae): insights from a taxonomic revision of the gynoxyoids for Bolivia
Project description:Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal-arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods--BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence.
Project description:Asexual lineages provide a challenge to species delimitation because species concepts either have little biological meaning for them or are arbitrary, since every individual is monophyletic and reproductively isolated from all other individuals. However, recognition and naming of asexual species is important to conservation and economic applications. Some scale insects are widespread and polyphagous pests of plants, and several species have been found to comprise cryptic species complexes. Parasaissetia nigra (Nietner, 1861) (Hemiptera: Coccidae) is a parthenogenetic, cosmopolitan and polyphagous pest that feeds on plant species from more than 80 families. Here, we implement multiple approaches to assess the species status of P. nigra, including coalescence-based analyses of mitochondrial and nuclear genes, and ecological niche modelling. Our results indicate that the sampled specimens of P. nigra should be considered to comprise at least two ecotypes (or "species") that are ecologically differentiated, particularly in relation to temperature and moisture. The presence of more than one ecotype under the current concept of P. nigra has implications for biosecurity because the geographic extent of each type is not fully known: some countries may currently have only one of the biotypes. Introduction of additional lineages could expand the geographic extent of damage by the pest in some countries.