Project description:Intricate species delimitation in Gynoxys (Senecioneae, Asteraceae): insights from a taxonomic revision of the gynoxyoids for Bolivia
Project description:a robust comparative genomic hybridization (CGH) approach was used with three strains of different Thiomonas species and five different strains of the same species.
Project description:The genus Cercospora includes many important plant pathogens that are commonly associated with leaf spot diseases on a wide range of cultivated and wild plant species. Due to the lack of useful morphological features and high levels of intraspecific variation, host plant association has long been a decisive criterion for species delimitation in Cercospora. Because several taxa have broader host ranges, reliance on host data in Cercospora taxonomy has proven problematic. Recent studies have revealed multi-gene DNA sequence data to be highly informative for species identification in Cercospora, especially when used in a concatenated alignment. In spite of this approach, however, several species complexes remained unresolved as no single gene proved informative enough to act as DNA barcoding locus for the genus. Therefore, the aims of the present study were firstly to improve species delimitation in the genus Cercospora by testing additional genes and primers on a broad set of species, and secondly to find the best DNA barcoding gene(s) for species delimitation. Novel primers were developed for tub2 and rpb2 to supplement previously published primers for these loci. To this end, 145 Cercospora isolates from the Iranian mycobiota together with 25 additional reference isolates preserved in the Westerdijk Fungal Biodiversity Institute were subjected to an eight-gene (ITS, tef1, actA, cmdA, his3, tub2, rpb2 and gapdh) analysis. Results from this study provided new insights into DNA barcoding in Cercospora, and revealed gapdh to be a promising gene for species delimitation when supplemented with cmdA, tef1 and tub2. The robust eight-gene phylogeny revealed several novel clades within the existing Cercospora species complexes, such as C. apii, C. armoraciae, C. beticola, C. cf. flagellaris and Cercospora sp. G. The C. apii s. lat. isolates are distributed over three clades, namely C. apii s. str., C. plantaginis and C. uwebrauniana sp. nov. The C. armoraciae s. lat. isolates are distributed over two clades, C. armoraciae s. str. and C. bizzozeriana. The C. beticola s. lat. isolates are distributed over two clades, namely C. beticola s. str. and C. gamsiana, which is newly described.
Project description:Extensive sex-biased expression has been seen in multiple surveys D. melanogaster. We were interested in broadly sampling sex-biased expression of orthologs and species- or lineage-specific genes in the Drosophila genus. To appropriately assay gene expression in multiple species, we used custom microarrays designed against each of six species that broadly sample the phylogenetic space represented by the newly completed genomes (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis) and an array designed against D. melanogaster to determine the overall patterns of sex-biased expression in those species and their chromosome linkage. Keywords: other PolyA+ mRNA in duplicate were isolated from 5-7 day old adult females and males of seven drosophila species. Male and female mRNA was labeled by Cy3 or Cy5 dye separately and hybridized simultaneously to the appropriate species-specific arrays. We performed at least four two-channel hybridizations for each species including two biological replicates and dye-swaps for each of them. Only single channels which passed stringent pre-processing quality control were used. A total of 67 channels of data were used in the final analysis.
Project description:Extensive sex-biased expression has been seen in multiple surveys D. melanogaster. We were interested in broadly sampling sex-biased expression of orthologs and species- or lineage-specific genes in the Drosophila genus. To appropriately assay gene expression in multiple species, we used custom microarrays designed against each of six species that broadly sample the phylogenetic space represented by the newly completed genomes (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis) and an array designed against D. melanogaster to determine the overall patterns of sex-biased expression in those species and their chromosome linkage. Keywords: other
Project description:Strain SM1988T is a Gram-negative, aerobic, oxidase- and catalase-positive, unipolar flagellated, and rod-shaped bacterium capable of hydrolyzing casein, gelatin and collagens. Phylogenetic analysis revealed that strain SM1988T formed a distinct phylogenetic lineage along with known genera within the family Pseudoalteromonadaceae, with 16S rRNA gene sequence similarity being less than 93.3% to all known species in the family. Based on the phylogenetic, genomic, chemotaxonomic and phenotypic data, strain SM1988T was considered to represent a novel species in a novel genus in the family Pseudoalteromonadaceae, for which the name Flocculibacter collagenilyticus gen. nov., sp. nov. is proposed, with the type strain being SM1988T (= MCCC 1K04279T = KCTC 72761T). Strain SM1988T showed a high production (236 U/mL) of extracellular collagenases, which had high activity against both bovine collagen and codfish collagen. Biochemical tests combined with genomic and secretomic analyses indicated that the collagenases secreted by strain SM1988T are serine proteases from the S8 family. These data suggest that strain SM1988T acts as an important player in marine collagen degradation and recycling and may have a promising potential in collagen resource utilization.
Project description:Background: Array comparative genomic hybridization (aCGH) is commonly used to screen different types of genetic variation in humans and model species. Here, we performed aCGH using an oligonucleotide gene-expression array for a non-model species, the intertidal snail Littorina saxatilis. First, we tested what types of genetic variation can be detected by this method using direct re-sequencing and comparison to the Littorina genome draft. Secondly, we performed a genome-wide comparison of four closely related Littorina species: L. fabalis, L. compressa, L. arcana and L. saxatilis and of populations of L. saxatilis found in Spain, Britain and Sweden. Finally, we tested whether we could identify genetic variation underlying M-bM-^@M-^\CrabM-bM-^@M-^] and M-bM-^@M-^\WaveM-bM-^@M-^] ecotypes of L. saxatilis. Results: We could reliably detect copy number variations, deletions and high sequence divergence (i.e. above 3%), but not single nucleotide polymorphisms. The overall hybridization pattern and number of significantly diverged genes were in close agreement with earlier phylogenetic reconstructions based on single genes. The trichotomy of L. arcana, L. compressa and L. saxatilis could not be resolved and we argue that these divergence events have occurred recently and very close in time. We found evidence for high levels of segmental duplication in the Littorina genome (10% of the transcripts represented on the array and up to 23% of the analyzed genomic fragments); duplicated genes and regions were mostly the same in all analyzed species. Finally, this method discriminated geographically distant populations of L. saxatilis, but we did not detect any significant genome divergence associated with ecotypes of L. saxatilis. Conclusions: The present study provides new information on the sensitivity and the potential use of oligonucleotide arrays for genotyping of non-model organisms. Applying this method to Littorina species yields insights into genome evolution following the recent species radiation and supports earlier single-gene based phylogenies. Genetic differentiation of L. saxatilis ecotypes was not detected in this study, despite pronounced innate phenotypic differences. The reason may be that these differences are due to single-nucleotide polymorphisms. Genomic DNA samples of L. fabalis, L. compressa, L. arcana and 3 geographic populations x 2 ecotypes of L. saxatilis (n=4 per group) have been hybridized to a transcriptomic oligoarray.
Project description:Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, "tip to root", for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg's reciprocal monophyly, (P(AB)),1 (2) Rodrigo's (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule-coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits might be drawn. In the species cases here, the results clearly indicate that there is a need for more gene sampling to substantiate either the new cohort of species indicated for B. tabaci or to detect the established subspecies taxonomy of L. dispar. Given the ease of use through the Geneious species delimitation plugins, similar analysis of such multi-gene datasets would be easily accommodated. Overall, the tip to root approach described here is recommended where careful consideration of species delimitation is required to support crucial biosecurity decisions based on accurate species identification.