Project description:Hsp90 is an essential chaperone responsible for trafficking a vast array of client proteins, which are substrates that Hsp90 regulates in eukaryotic cells under stress conditions. The ATP-binding N-terminal domain of Hsp90 (also known as a GHKL type ATPase domain) can serve as a specific drug target, because sufficient structural diversity in the ATP-binding pocket of Hsp90 allows for ortholog selectivity of Hsp90 inhibitors. The primary objective of this study is to identify inhibitors specific for the ATP-binding domain of Entamoeba histolytica Hsp90 (EhHsp90). An additional aim, using a combination of site-directed mutagenesis and a protein in vitro assay, is to show that the antiparasitic activity of Hsp90 inhibitors is dependent on specific residues within the ATP-binding domain. Here, we tested the activity of 43 inhibitors of Hsp90 that we previously identified using a high-throughput screen. Of the 43 compounds tested, 19 competed for binding of the EhHsp90 ATP-binding domain. Five out of the 19 EhHsp90 protein hits demonstrated activity against E. histolytica in vitro culture: rifabutin, rutilantin, cetylpyridinium chloride, pararosaniline pamoate and gentian violet. These five top E. histolytica Hsp90 inhibitors showed 30-100% inhibition of E. histolytica in culture in the micromolar range. These data suggest that E. histolytica-specific Hsp90 inhibitors are possible to identify and provide important lead compounds for the development of novel antiamebic drugs.
Project description:Entamoeba histolytica is a protozoan parasite which causes colitis and liver abscesses. A pilot microarray consisting of 360 unique parasite genes was constructed using identical methods to the larger array (1,971 unique genes). The four arrays in this data set were used to ascertain whether the microarrays would be useful in detecting changes in transcript abundance by exposing parasites to heat shock (42 0C for 1 hr). Approximately, 17% of the genes were regulated by at least two fold including many genes previously shown to be involved in heat shock response. This data confirmed that the genomic DNA arrays were useful in detecting changes in transcript abundance.
Project description:BackgroundInvasive amoebiasis, caused by infection with the human parasite Entamoeba histolytica remains a major cause of morbidity and mortality in some less-developed countries. Genetically E. histolytica exhibits a number of unusual features including having approximately 20% of its genome comprised of repetitive elements. These include a number of families of SINEs - non-autonomous elements which can, however, move with the help of partner LINEs. In many eukaryotes SINE mobility has had a profound effect on gene expression; in this study we concentrated on one such element - EhSINE1, looking in particular for evidence of recent transposition.ResultsEhSINE1s were detected in the newly reassembled E. histolytica genome by searching with a Hidden Markov Model developed to encapsulate the key features of this element; 393 were detected. Examination of their sequences revealed that some had an internal structure showing one to four 26-27 nt repeats. Members of the different classes differ in a number of ways and in particular those with two internal repeats show the properties expected of fairly recently transposed SINEs - they are the most homogeneous in length and sequence, they have the longest (i.e. the least decayed) target site duplications and are the most likely to show evidence (in a cDNA library) of active transcription. Furthermore we were able to identify 15 EhSINE1s (6 pairs and one triplet) which appeared to be identical or very nearly so but inserted into different sites in the genome; these provide good evidence that if mobility has now ceased it has only done so very recently.ConclusionsOf the many families of repetitive elements present in the genome of E. histolytica we have examined in detail just one - EhSINE1. We have shown that there is evidence for waves of transposition at different points in the past and no evidence that mobility has entirely ceased. There are many aspects of the biology of this parasite which are not understood, in particular why it is pathogenic while the closely related species E. dispar is not, the great genetic diversity found amongst patient isolates and the fact, which may be related, that only a small proportion of those infected develop clinical invasive amoebiasis. Mobile genetic elements, with their ability to alter gene expression may well be important in unravelling these puzzles.
Project description:Entamoeba histolytica is a protozoan parasite which causes colitis and liver abscesses. A pilot microarray consisting of 360 unique parasite genes was constructed using identical methods to the larger array (1,971 unique genes). The four arrays in this data set were used to ascertain whether the microarrays would be useful in detecting changes in transcript abundance by exposing parasites to heat shock (42 0C for 1 hr). Approximately, 17% of the genes were regulated by at least two fold including many genes previously shown to be involved in heat shock response. This data confirmed that the genomic DNA arrays were useful in detecting changes in transcript abundance. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set
Project description:Transposable elements are potent agents of genomic change during evolution, but require access to chromatin for insertion-and not all genes provide equivalent access. To test whether the regulatory features of heat-shock genes render their proximal promoters especially susceptible to the insertion of transposable elements in nature, we conducted an unbiased screen of the proximal promoters of 18 heat-shock genes in 48 natural populations of Drosophila. More than 200 distinctive transposable elements had inserted into these promoters; greater than 96% are P elements. By contrast, few or no P element insertions segregate in natural populations in a "negative control" set of proximal promoters lacking the distinctive regulatory features of heat-shock genes. P element transpositions into these same genes during laboratory mutagenesis recapitulate these findings. The natural P element insertions cluster in specific sites in the promoters, with up to eight populations exhibiting P element insertions at the same position; laboratory insertions are into similar sites. By contrast, a "positive control" set of promoters resembling heat-shock promoters in regulatory features harbors few P element insertions in nature, but many insertions after experimental transposition in the laboratory. We conclude that the distinctive regulatory features that typify heat-shock genes (in Drosophila) are especially prone to mutagenesis via P elements in nature. Thus in nature, P elements create significant and distinctive variation in heat-shock genes, upon which evolutionary processes may act.
Project description:Ubiquitination is important for numerous cellular processes in most eukaryotic organisms, including cellular proliferation, development, and protein turnover by the proteasome. The intestinal parasite Entamoeba histolytica harbors an extensive ubiquitin-proteasome system. Proteasome inhibitors are known to impair parasite proliferation and encystation, suggesting the ubiquitin-proteasome pathway as a viable therapeutic target. However, no functional studies of the E. histolytica ubiquitination enzymes have yet emerged. Here, we have cloned and characterized multiple E. histolytica ubiquitination components, spanning ubiquitin and its activating (E1), conjugating (E2), and ligating (E3) enzymes. Crystal structures of EhUbiquitin reveal a clustering of unique residues on the α1 helix surface, including an eighth surface lysine not found in other organisms, which may allow for a unique polyubiquitin linkage in E. histolytica. EhUbiquitin is activated by and forms a thioester bond with EhUba1 (E1) in vitro, in an ATP- and magnesium-dependent fashion. EhUba1 exhibits a greater maximal initial velocity of pyrophosphate:ATP exchange than its human homolog, suggesting different kinetics of ubiquitin activation in E. histolytica. EhUba1 engages the E2 enzyme EhUbc5 through its ubiquitin-fold domain to transfer the EhUbiquitin thioester. However, EhUbc5 has a >10-fold preference for EhUba1∼Ub compared with unconjugated EhUba1. A crystal structure of EhUbc5 allowed prediction of a noncovalent "backside" interaction with EhUbiquitin and E3 enzymes. EhUbc5 selectively engages EhRING1 (E3) to the exclusion of two HECT family E3 ligases, and mutagenesis indicates a conserved mode of E2/RING-E3 interaction in E. histolytica.
Project description:An amitochondriate parasite, Entamoeba histolytica, has a bifunctional ADHE enzyme (EhADH2) that contains separate acetaldehyde (ALDH) and alcohol (ADH) dehydrogenase activities. In a cluster of 25 bifunctional enzymes of single cell eukaryotes and bacteria, we present a phylogenetic analysis that suggests a lateral gene transfer event (prokaryotic ancestor to single-cell eukaryotic ancestor) and a complex structure that aligns with key homologs in the ADHE evolutionary history based on their similarity with bacterial alcohol dehydrogenases. We show that the ADHE in Entamoeba lineage diverged independently but shows significant similarities to the structure of ADHE in Fusobacterium, and a complex model that maps its ALDH and ADH domain well with bacteria such as Geobaccillus thermoglucosidasius. Our analyses likely support a lateral acquisition of an EhADH2-like ancestral gene from bacteria. Several evolutionary analyses software programs reveal that the enzyme structure is highly conserved, and maintains a similar function within a diverse set of pathogens, including Escherichia coli and Clostridium spp.
Project description:Entamoeba histolytica is a protozoan parasite which causes colitis and liver abscesses. A pilot microarray consisting of 360 unique parasite genes was constructed using identical methods to the larger array (1,971 unique genes). The four arrays in this data set were used to ascertain whether the microarrays would be useful in detecting changes in transcript abundance by exposing parasites to heat shock (42 0C for 1 hr). Approximately, 17% of the genes were regulated by at least two fold including many genes previously shown to be involved in heat shock response. This data confirmed that the genomic DNA arrays were useful in detecting changes in transcript abundance. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. User Defined
Project description:Entamoeba histolytica is the causative agent of amoebic dysentery and liver abscess. The medium for its axenic culture contains glucose as energy source, and we addressed the question whether E. histolytica can also use fructose instead. As the amoebic hexokinases do not phosphorylate fructose, a separate fructokinase is essential. The genome project revealed a single candidate gene encoding an E. histolytica homolog of bacterial fructokinases. This gene was cloned, and the recombinant enzyme had a magnesium-dependent fructose 6-kinase activity (EC 2.7.1.4) with a K m for fructose of 0.156 mM and a V max of 131 U/mg protein. Recombinant fructokinase also showed a much weaker mannokinase activity, but no activity with glucose or galactose. The amoebae could be switched from glucose to fructose medium without any detectable consequence on doubling time. Fructokinase messenger RNA (mRNA) was modestly but significantly upregulated in amoebae switched to fructose medium as well as in fructose-adapted E. histolytica.
Project description:Enteric protozoan Entamoeba histolytica is a major cause of debilitating diarrheal infection worldwide with high morbidity and mortality. Even though the clinical burden of this parasite is very high, this infection is categorized as a neglected disease. Parasite is transmitted through feco-oral route and exhibit two distinct stages namely - trophozoites and cysts. Mechanism and regulation of encystation is not clearly understood. Previous studies have established the role of Heat shock protein 90 (Hsp90) in regulating stage transition in various protozoan parasites like Giardia, Plasmodium, Leishmania, and Toxoplasma. Our study for the first time reports that Hsp90 plays a crucial role in life cycle of Entamoeba as well. We identify Hsp90 to be a negative regulator of encystation in Entamoeba. We also show that Hsp90 inhibition interferes with the process of phagocytosis in Entamoeba. Overall, we show that Hsp90 plays an important role in virulence and transmission of Entamoeba.