Project description:Guidelines recommend targeted antifungal prophylaxis for liver transplant (LT) recipients based on tiers of risk, rather than universal prophylaxis. The feasibility and efficacy of tiered, targeted prophylaxis is not well established. We performed a retrospective study of LT recipients who received targeted prophylaxis (n = 145; voriconazole [VORI; 54%], fluconazole [8%], no antifungal [38%]) versus universal VORI prophylaxis (n = 237). Median durations of targeted and universal prophylaxis were 11 and 6 days, respectively (p < 0.0001). The incidence of invasive fungal infections (IFIs) in targeted and universal groups was 6.9% and 4.2% (p = 0.34). Overall, intra-abdominal candidiasis (73%) was the most common IFI. Posttransplant bile leaks (p = 0.001) and living donor transplants (p = 0.04) were independent risk factors for IFI. IFIs occurred in 6% of high-risk transplants who received prophylaxis and 4% of low-risk transplants who did not receive prophylaxis (p = 1.0). Mortality rates (100 days) were 10% (targeted) and 7% (universal) (p = 0.26); attributable mortality due to IFI was 10%. Compliance with prophylaxis recommendations was 97%. Prophylaxis was discontinued for toxicity in 2% of patients. Targeted antifungal prophylaxis in LT recipients was feasible and safe, effectively prevented IFIs and reduced the number of patients exposed to antifungals. Bile leaks and living donor transplants should be considered high-risk indications for prophylaxis.
Project description:The optimal prevention strategy for invasive aspergillosis (IA) in lung transplant recipients (LTXr) is unknown. In 2016, the Danish guidelines were changed from universal to targeted IA prophylaxis. Previously, we found higher rates of adverse events in the universal prophylaxis period. In a Danish nationwide study including LTXr, for 2010-2019, we compared IA rates in time periods with universal vs. targeted prophylaxis and during person-time with vs. person-time without antifungal prophylaxis. IA hazard rates were analyzed in multivariable Cox models with adjustment for time after LTX. Among 295 LTXr, antifungal prophylaxis was initiated in 183/193 and 6/102 during the universal and targeted period, respectively. During the universal period, 62% discontinued prophylaxis prematurely. The median time on prophylaxis was 37 days (IQR 11-84). IA was diagnosed in 27/193 (14%) vs. 15/102 (15%) LTXr in the universal vs. targeted period, with an adjusted hazard ratio (aHR) of 0.94 (95% CI 0.49-1.82). The aHR of IA during person-time with vs. person-time without antifungal prophylaxis was 0.36 (95% CI 0.12-1.02). No difference in IA was found during periods with universal vs. targeted prophylaxis. Prophylaxis was protective of IA when taken. Targeted prophylaxis may be preferred over universal due to comparable IA rates and lower rates of adverse events.
Project description:Rationale: Many lung transplant centers prescribe antifungal medications after transplantation to prevent invasive fungal infections (IFIs); however, the effectiveness of antifungal prophylaxis at reducing the risk of all-cause mortality or IFI has not been established.Objectives: We aimed to evaluate the effect of antifungal prophylaxis on all-cause mortality and IFI in lung transplant patients.Methods: Using administrative claims data, we identified adult patients who underwent lung transplantation between January 1, 2005, and December 31, 2018. Propensity score analysis using inverse probability treatment-weighting approach was used to balance the differences in baseline characteristics between those receiving antifungal prophylaxis and those not receiving antifungal prophylaxis. Cox proportional hazards regression was used to compare rates of all-cause mortality and IFI in both groups.Results: We identified 662 lung transplant recipients (LTRs) (387 received prophylaxis and 275 did not). All-cause mortality was significantly lower in those receiving antifungal prophylaxis compared with those not receiving antifungal prophylaxis (event rate per 100 person-years, 8.36 vs. 19.49; hazard ratio, 0.43; 95% confidence interval, 0.26-0.71; P = 0.003). Patients receiving antifungal prophylaxis had a lower rate of IFI compared with those not receiving prophylaxis (event rate per 100 person-years, 14.94 vs. 22.37; hazard ratio, 0.68; 95% confidence interval, 0.44-1.05; P = 0.079), but did not reach statistical significance.Conclusions: In this real-world analysis, antifungal prophylaxis in LTRs was associated with reduced all-cause mortality compared with those not receiving antifungal prophylaxis. Rates of IFI were also lower in those receiving prophylaxis, but this was not statistically significant in our primary analysis.
Project description:Invasive fungal infections (IFIs) are one of the most important infectious complications after liver transplantation, determining morbidity and mortality. Antimycotic prophylaxis may impede IFI, but a consensus on indication, agent, or duration is still missing. Therefore, this study aimed to investigate the incidence of IFIs under targeted echinocandin antimycotic prophylaxis in adult high-risk liver transplant recipients. We retrospectively reviewed all patients undergoing a deceased donor liver transplantation at the Medical University of Innsbruck in the period from 2017 to 2020. Of 299 patients, 224 met the inclusion criteria. We defined patients as being at high risk for IFI if they had two or more prespecified risk factors and these patients received prophylaxis. In total, 85% (190/224) of the patients were correctly classified according to the developed algorithm, being able to predict an IFI with a sensitivity of 89%. Although 83% (90/109) so defined high-risk recipients received echinocandin prophylaxis, 21% (23/109) still developed an IFI. The multivariate analysis identified the age of the recipient (hazard ratio-HR = 0.97, p = 0.027), split liver transplantation (HR = 5.18, p = 0.014), massive intraoperative blood transfusion (HR = 24.08, p = 0.004), donor-derived infection (HR = 9.70, p < 0.001), and relaparotomy (HR = 4.62, p = 0.003) as variables with increased hazard ratios for an IFI within 90 days. The fungal colonization at baseline, high-urgency transplantation, posttransplant dialysis, bile leak, and early transplantation showed significance only in a univariate model. Notably, 57% (12/21) of the invasive Candida infections were caused by a non-albicans species, entailing a markedly reduced one-year survival. The attributable 90-day mortality rate of an IFI after a liver transplant was 53% (9/17). None of the patients with invasive aspergillosis survived. Despite targeted echinocandin prophylaxis, there is still a notable risk for IFI. Consequently, the prophylactic use of echinocandins must be critically questioned regarding the high rate of breakthrough infections, the increased occurrence of fluconazole-resistant pathogens, and the higher mortality rate in non-albicans Candida species. Adherence to the internal prophylaxis algorithms is of immense importance, bearing in mind the high IFI rates in case algorithms are not followed.
Project description:Invasive fungal infections (IFIs) are frequent and outcome-relevant complications in the early postoperative period after orthotopic liver transplantation (OLT). Recent guidelines recommend targeted antimycotic prophylaxis (TAP) for high-risk liver transplant recipients (HR-LTRs). However, the choice of antimycotic agent is still a subject of discussion. Echinocandins are increasingly being used due to their advantageous safety profile and the increasing number of non-albicans Candida infections. However, the evidence justifying their use remains rather sparse. Recently published data on breakthrough IFI (b-IFI) raise concerns about echinocandin efficacy, especially in the case of intra-abdominal candidiasis (IAC), which is the most common infection site after OLT. In this retrospective study, we analyzed 100 adult HR-LTRs undergoing first-time OLT and receiving echinocandin prophylaxis between 2017 and 2020 in a tertiary university hospital. We found a breakthrough incidence of 16%, having a significant impact on postoperative complications, graft survival, and mortality. The reasons for this may be multifactorial. Among the pathogen-related factors, we identified the breakthrough of Candida parapsilosis in 11% of patients and one case of persistent IFI due to the development of a secondary echinocandin resistance of an IAC caused by Candida glabrata. Consequently, the efficacy of echinocandin prophylaxis in liver transplantation should be questioned. Further studies are necessary to clarify the matter of breakthrough infections under echinocandin prophylaxis.
Project description:Despite the availability of new antifungal compounds, invasive fungal infection remains a significant cause of morbidity and mortality in children and adults undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Allogeneic HSCT recipients suffer from a long lasting defect of different arms of the immune system, which increases the risk for and deteriorates the prognosis of invasive fungal infections. In turn, advances in understanding these immune deficits have resulted in promising strategies to enhance or restore critical immune functions in allogeneic HSCT recipients. Potential approaches include the administration of granulocytes, since neutropenia is the single most important risk factor for invasive fungal infection, and preliminary clinical results suggest a benefit of adoptively transferred donor-derived antifungal T cells. In vitro data and animal studies demonstrate an antifungal effect of natural killer cells, but clinical data are lacking to date. This review summarizes and critically discusses the available data of immunotherapeutic strategies in allogeneic HSCT recipients suffering from invasive fungal infection.
Project description:IntroductionAlthough echinocandins are recommended as first-line prophylaxis for high-risk orthotopic liver transplant (OLT) recipients, occurrence of breakthrough-invasive fungal infections (IFIs) remains a serious concern. We aim to assess the risk of breakthrough IFIs among OLT recipients exposed to prophylaxis with echinocandins compared to other antifungals.Materials and methodsTwo authors independently searched PubMed-MEDLINE, Embase, study registries and reference lists from inception to March 2021, to retrieve randomised controlled trials (RCTs) or observational studies comparing efficacy and safety of echinocandins vs other antifungals for prophylaxis in OLT recipients. Data were independently extracted from two authors, and the quality of included studies was independently assessed according to ROB 2.0 tool for RCTs and ROBINS-I tool for observational studies. The primary outcome was occurrence of breakthrough IFI at the end of prophylaxis (EOP).Results698 articles were screened, and ten studies (3 RCTs and 7 observational) were included. No difference between echinocandins and other antifungals in terms of breakthrough IFIs at the EOP emerged both from RCTs (odds ratio [OR] 0.85, 95% CI 0.24-2.99) and observational studies (OR 1.43, 95% CI 0.28-7.40). No difference emerged also for secondary outcomes. In the subgroup comparison between echinocandins and polyenes, a trend for higher risk of breakthrough IFI at the EOP (OR 4.82, 95% CI 0.97-24.03) was noted.ConclusionsEchinocandins do not seem to be associated with increased risk of breakthrough IFIs in OLT recipients. However, the large diversity in the comparator group hinders a definitive interpretation. Further studies exploring the relationship between echinocandin use and breakthrough IFIs according to specific comparators are warranted.
Project description:This study explored the epidemiology, risk factors, and prognosis of invasive fungal disease (IFD) in Chinese lung transplant recipients (LTRs). This retrospective cohort study included patients who received lung transplants at four hospitals in South China between January 2015 and June 2019. The participants were divided into IFD and non-IFD (NIFD) groups. The final analysis included 226 LTRs (83.2% males) aged 55.0 ± 14.2 years old. Eighty-two LTRs (36.3%) developed IFD (proven or probable diagnosis). The most common pathogens were Aspergillus (57.3%), Candida (19.5%), and Pneumocystis jiroveci (13.4%). Multivariate logistic regression revealed that anastomotic disease [odds ratio (OR): 11.86; 95% confidence interval (95%CI): 4.76-29.54; P < 0.001], cytomegalovirus (CMV) pneumonia (OR: 3.85; 95%CI: 1.88-7.91; P = 0.018), and pre-transplantation IFD (OR: 7.65; 95%CI: 2.55-22.96; P < 0.001) were associated with higher odds of IFD, while double-lung transplantation (OR: 0.40; 95%CI: 0.19-0.79; P = 0.009) was associated with lower odds of IFD. Logistic regression analysis showed that anastomotic disease was associated with higher odds of death (OR: 5.01; 95%CI: 1.24-20.20; P = 0.02) and that PJP prophylaxis was associated with lower odds of death (OR: 0.01; 95%CI: 0.001-0.11; P < 0.001). Invasive fungal disease is prevalent among LTRs in southern China, with Aspergillus the most common pathogen. Prophylaxis should be optimized based on likely pathogens.
Project description:Invasive fungal infections are a major cause of morbidity and mortality among solid organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients. Transplant patients are at risk for such invasive fungal infections. The most common invasive fungal infections are invasive candidiasis in the SOT and invasive aspergillosis in the HSCT. In this article, we will discuss the epidemiology of invasive fungal infections in the transplant recipients and susceptibility patterns of the fungi associated with these infections. Additionally, the pharmacology and clinical efficacy of the new antifungal, isavuconazole, and the new posaconazole formulations will be reviewed. Isavuconazole is a new extended-spectrum triazole that was recently approved for the treatment of invasive aspergillosis and mucormycosis. Advantages of this triazole include the availability of a water-soluble intravenous formulation, excellent bioavailability of the oral formulation, and predictable pharmacokinetics in adults. Posaconazole, a broad-spectrum triazole antifungal agent, is approved for the prevention of invasive aspergillosis and candidiasis in addition to the treatment of oropharyngeal candidiasis. Posaconazole oral suspension solution has shown some limitations in the setting of fasting state absorption, elevated gastrointestinal pH, and increased motility. The newly approved delayed-release oral tablet and intravenous solution formulations provide additional treatment options by reducing interpatient variability and providing flexibility in these set of critically ill patients. This review will detail these most recent studies.
Project description:BackgroundInvasive fungal infections (IFIs) are common following lung transplantation. Isavuconazole is unstudied as prophylaxis in organ transplant recipients. We compared effectiveness and tolerability of isavuconazole and voriconazole prophylaxis in lung transplant recipients.MethodsA single-center, retrospective study of patients who received isavuconazole (September 2015-February 2018) or voriconazole (September 2013-September 2015) for antifungal prophylaxis. IFIs were defined by EORTC/MSG criteria.ResultsPatients received isavuconazole (n = 144) or voriconazole (n = 156) for median 3.4 and 3.1 months, respectively. Adjunctive inhaled amphotericin B (iAmB) was administered to 100% and 41% of patients in the respective groups. At 1 year, 8% of patients receiving isavuconazole or voriconazole developed IFIs. For both groups, 70% and 30% of IFIs were caused by molds and yeasts, respectively, and breakthrough IFI (bIFI) rate was 3%. Outcomes did not significantly differ for patients receiving or not receiving iAmB. Independent risk factors for bIFI and breakthrough invasive mold infection (bIMI) were mold-positive respiratory culture and red blood cell transfusion >7 units at transplant. Bronchial necrosis >2 cm from anastomosis and basiliximab induction were also independent risk factors for bIMI. Isavuconazole and voriconazole were discontinued prematurely due to adverse events in 11% and 36% of patients, respectively (P = .0001). Most common causes of voriconazole and isavuconazole discontinuation were hepatotoxicity and lack of oral intake, respectively. Patients receiving ≥90 days prophylaxis had fewer IFIs at 1 year (3% vs 9%, P = .02). IFIs were associated with increased mortality (P = .0001) and longer hospitalizations (P = .0005).ConclusionsIsavuconazole was effective and well tolerated as antifungal prophylaxis following lung transplantation.