Project description:High-entropy oxides (HEOs) have aroused growing interest due to fundamental questions relating to their structure formation, phase stability, and the interplay between configurational disorder and physical and chemical properties. Introducing Fe(II) and Mn(II) into a rocksalt HEO is considered challenging, as theoretical analysis suggests that they are unstable in this structure under ambient conditions. Here, we develop a bottom-up method for synthesizing Mn- and Fe-containing rocksalt HEO (FeO-HEO). We present a comprehensive investigation of its crystal structure and the random cation-site occupancy. We show the improved structural robustness of this FeO-HEO and verify the viability of an oxygen sublattice as a buffer layer. Compositional analysis reveals the valence and spin state of the iron species. We further report the antiferromagnetic order of this FeO-HEO below the transition temperature ~218 K and predict the conditions of phase stability of Mn- and Fe-containing HEOs. Our results provide fresh insights into the design and property tailoring of emerging classes of HEOs.
Project description:Mixed metal sulfides exhibit outstanding electrochemical performance compared to single metal sulfides and mixed metal oxides because of their richer redox reactions and high electronic conductivity. In the present study, Zn-Co-S nanostrip cluster arrays were formed from ZnCo2O4 grown on Ni foam by an anion exchange reaction using a two-step hydrothermal process. Morphological characterization confirmed that the Zn-Co-S nanostrip cluster arrays had grown homogeneously on the skeleton of the 3D Ni foam. The length of the nanostrip was approximately 8 µm, and the width ranged from 600 to 800 nm. The Ni foam-supported Zn-Co-S nanostrip cluster arrays were assessed directly for electrochemical supercapacitor applications. Compared to ZnCo2O4, the Zn-Co-S electrode exhibited a three-fold higher specific capacity of 830 C g-1 at a specific current of 2.0 A g-1. The higher polarizability, lower electro-negativity, and larger size of the S2- ion played an important role in substituting oxygen with sulfur, which enhanced the performance. The Zn-Co-S//AC hybrid device delivered a maximum specific energy of 19.0 Wh kg-1 at a specific power of 514 W kg-1. The remarkable performance of Zn-Co-S nanostrip cluster arrays highlights their potential as a positive electrode for hybrid supercapacitor applications.
Project description:In the energy storage field, an electrode material must possess both good ionic and electronic conductivities to perform well, especially when high power is needed. In this context, the development of composite electrode materials combining an electrochemically active and good ionic conductor phase with an electronic conductor appears as a perfectly adapted approach to generate a synergetic effect and optimize the energy storage performance. In this work, three layered MnO2 phases with various morphologies (veils, nanoplatelets and microplatelets) were combined with electronic conductor cobalt oxyhydroxides with different platelet sizes (∼20 nm vs. 70 nm wide), to synthesize 6 different composites by exfoliation and restacking processes. The influence of precursors' morphology on the distribution of the Mn and Co objects within the composites was carefully investigated and correlated with the electrochemical performance of the final restacked material. Overall, the best performing restacked composite was obtained by combining MnO2 possessing a veil morphology with the smallest cobalt oxyhydroxide nanoplatelets, leading to the most homogeneous distribution of the Mn and Co objects at the nanoscale. More generally, the aim of this work is to understand how the size and morphology of the precursor building blocks influence their distribution homogeneity within the final composite and to find the most compatible building blocks to reach a homogeneous distribution at the nanoscale.
Project description:Recently, metal-organic frameworks (MOFs) and hybrids with biomaterial are broadly investigated for a variety of applications. In this work, a novel dual-phase MOF has been grown on bacterial cellulose (BC) as a biopolymer nano-fibrous film (Ni/Mn-MOF@BC), and nickel foam (Ni/Mn-MOF@NF) using a simple reflux method to explore their potential for photocatalyst and energy storage applications. The studies showed that the prepared Mn and Ni/Mn-MOFs display different structures. Besides, the growth of MOFs on BC substantially changed the morphology of the samples by reducing their micro sized scales to nanoparticles. The nanosized MOF particles grown on BC served as a visible-light photocatalytic material. Regarding the high surface area of BC and the synergistic effect of two metal ions, Ni/Mn-MOF@BC with a lower band gap demonstrates remarkable photocatalytic degradation efficiency (ca. 84% within 3 h) against methylene blue (MB) dye under visible light, and the catalyst retained 65% of its initial pollutant removal properties after four cycles of irradiation. Besides, MOF powders deposited on nickel foam have been utilized as highly capacitive electrochemical electrodes. There, Ni/Mn-MOF@NF electrode also possesses outstanding electrochemical properties, showing a specific capacitance of 2769 Fg-1 at 0.5 Ag-1, and capacity retention of 94% after 1000 cycles at 10 Ag-1.
Project description:A series of Ni-MOF materials were synthesized via a simple hydrothermal method and can be employed as electrodes for supercapacitors (SCs). Different temperatures were selected to unveil the effect of temperature on the formation, structure, and electrochemical performance of Ni-MOF-x (x = 60, 80, 100, and 120). Ni-MOF-80 possessed a larger specific surface area with a cross-network structure formed on its surface. The synthesized Ni-MOF electrode delivered a specific capacity of 30.89 mA h g-1 when the current density reached 1 A g-1 in a three-electrode system. The as-fabricated Ni-MOF materials could be further designed and are expected to deliver satisfactory performance in practice.
Project description:Recently, various metal-organic framework (MOF)-based supercapacitors (SCs) have received much attention due to their porosity and well-defined structures. Yet poor conductivity and low capacitance in most MOF-based devices limit their wide application. As an electrode material, 2D MOFs exhibit a rapid electron transfer rate and high specific surface area due to their unique structures. In this work, a 2D layered Ni-MOF is synthesized through a simple solvothermal method and serves as an electrode material for SCs. Electrochemical studies show that the Ni-MOF exhibits low charge transfer resistance, excellent specific capacitance of 1668.7 F g-1 at 2 A g-1 and capacitance retention of 90.3% after 5000 cycles at 5 A g-1. Moreover, Ni-MOF//AC asymmetric SCs are assembled. The device exhibits high specific capacitance of 161 F g-1 at 0.2 A g-1 and the energy density reached 57.29 W h kg-1 at a power density of 160 W kg-1. The high electrochemical performance can be ascribed to the inherent porosity of MOFs and the 2D layered structure.
Project description:Among the existing materials for heat conversion, high-entropy alloys are of great interest due to the tunability of their functional properties. Here, we aim to produce single-phase high-entropy oxides composed of Co-Cr-Fe-Mn-Ni-O through spark plasma sintering (SPS), testing their thermoelectric (TE) properties. This material was successfully obtained before via a different technique, which requires a very long processing time. Hence, the main target of this work is to apply spark plasma sintering, a much faster and scalable process. The samples were sintered in the temperature range of 1200-1300 °C. Two main phases were formed: rock salt-structured Fm3̅m and spinel-structured Fd3̅m. Comparable transport properties were achieved via the new approach: the highest value of the Seebeck coefficient reached -112.6 μV/K at room temperature, compared to -150 μV/K reported before; electrical properties at high temperatures are close to the properties of the single-phase material (σ = 0.2148 S/cm, σ ≈ 0.2009 S/cm reported before). These results indicate that SPS can be successfully applied to produce highly efficient TE high-entropy alloys in a fast and scalable way. Further optimization is needed for the production of single-phase materials, which are expected to exhibit an even better TE functionality.
Project description:The influence of Co (Ni) and B co-doping on the structural, magnetic and magnetocaloric properties of (Mn,Fe) 2 (P,Si) compounds is investigated by X-ray diffraction (XRD), differential scanning calorimetry, magnetic and direct temperature change measurements. It is found that Co (Ni) and B co-doping is an effective approach to tune both the Curie temperature and the thermal hysteresis of (Mn,Fe) 2 (P,Si) materials without losing either the giant magnetocaloric effect or the positive effect of the B substitution on the mechanical stability. An increase in B concentration leads to a rapid decrease in thermal hysteresis, while an increase in the Co or Ni concentration hardly changes the thermal hysteresis of the (Mn,Fe) 2 (P,Si) compounds. However, the Curie temperature decreases slowly as a function of the Co or Ni content, while it increases dramatically for increasing B concentration. Hence, the co-substitution of Fe and P by Co (Ni) and B, respectively, offers a new control parameter to adjust the Curie temperature and reduce the thermal hysteresis of the (Mn,Fe) 2 (P,Si) materials.
Project description:Nanosized spinel ferrites MFe2O4 (M = Mn, Co, Ni, Cu, Zn)-coated flaky FeSiAl alloy composites were synthesized successfully. Nano-ferrites preferentially grow into nanoplatelets due to induced or restricted growth on the flaky surface of FeSiAl. With annealing temperature increasing, the ferrites' nanosheets thicken gradually and then grow into irregular particles. The annealing temperature not only affects the nanosized morphology and coating but also the magnetic properties of flaky FeSiAl composites. The saturation magnetization of CuFe2O4- or NiFe2O4-coated FeSiAl is approximate 69 emu/g, where the value of MnFe2O4-, CoFe2O4- and ZnFe2O4-coated FeSiAl show a decreasing trend generally from 64 emu/g to 55.7 emu/g annealing at 800 °C, respectively. The saturation magnetization of flaky FeSiAl composites was improved with the increased annealing temperature, except for those coated with ZnFe2O4 and NiFe2O4. These results are useful for improving the comprehensive properties of ferrite-coated flaky FeSiAl alloy composites.