Project description:Cultured sensory neurons can exhibit complex activity patterns following stimulation in terms of increased excitability and interconnected responses of multiple neurons. Although these complex activity patterns suggest a network-like configuration, research so far had little interest in synaptic network formation ability of the sensory neurons. To identify interaction profiles of Dorsal Root Ganglia (DRG) neurons and explore their putative connectivity, we developed an in vitro experimental approach. A double transgenic mouse model, expressing genetically encoded calcium indicator (GECI) in their glutamatergic neurons, was produced. Dissociated DRG cultures from adult mice were prepared with a serum-free protocol and no additional growth factors or cytokines were utilized for neuronal sensitization. DRG neurons were grown on microelectrode arrays (MEA) to induce stimulus-evoked activity with a modality-free stimulation strategy. With an almost single-cell level electrical stimulation, spontaneous and evoked activity of GCaMP6s expressing neurons were detected under confocal microscope. Typical responses were analyzed, and correlated calcium events were detected across individual DRG neurons. Next, correlated responses were successfully blocked by glutamatergic receptor antagonists, which indicated functional synaptic coupling. Immunostaining confirmed the presence of synapses mainly in the axonal terminals, axon-soma junctions and axon-axon intersection sites. Concisely, the results presented here illustrate a new type of neuron-to-neuron interaction in cultured DRG neurons conducted through synapses. The developed assay can be a valuable tool to analyze individual and collective responses of the cultured sensory neurons.
Project description:Throughout the vertebrate lineage, dopaminergic neurons form important neuromodulatory systems that influence motor behavior, mood, cognition, and physiology. Studies in mammals have established that dopaminergic neurons often use γ-aminobutyric acid (GABA) or glutamatergic cotransmission during development and physiological function. Here, we analyze vglut2, gad1b and gad2 expression in combination with tyrosine hydroxylase immunoreactivity in 4-day-old larval and 30-day-old juvenile zebrafish brains to determine which dopaminergic and noradrenergic groups may use GABA or glutamate as a second transmitter. Our results show that most dopaminergic neurons also express GABAergic markers, including the dopaminergic groups of the olfactory bulb (homologous to mammalian A16) and the subpallium, the hypothalamic groups (A12, A14), the prethalamic zona incerta group (A13), the preoptic groups (A15), and the pretectal group. Thus, the majority of catecholaminergic neurons are gad1b/2-positive and coexpress GABA. A very few gad1/2-negative dopaminergic groups, however, express vglut2 instead and use glutamate as a second transmitter. These glutamatergic dual transmitter phenotypes are the Orthopedia transcription factor-dependent, A11-type dopaminergic neurons of the posterior tuberculum. All together, our results demonstrate that all catecholaminergic groups in zebrafish are either GABAergic or glutamatergic. Thus, cotransmission of dopamine and noradrenaline with either GABA or glutamate appears to be a regular feature of zebrafish catecholaminergic systems. We compare our results with those that have been described for mammalian systems, discuss the phenomenon of transmitter dualism in the context of developmental specification of GABAergic and glutamatergic regions in the brain, and put this phenomenon in an evolutionary perspective.
Project description:Gephyrin is a scaffold protein essential for stabilizing glycine and GABA(A) receptors at inhibitory synapses. Here, recombinant intrabodies against gephyrin (scFv-gephyrin) were used to assess whether this protein exerts a transynaptic action on GABA and glutamate release. Pair recordings from interconnected hippocampal cells in culture revealed a reduced probability of GABA release in scFv-gephyrin-transfected neurons compared with controls. This effect was associated with a significant decrease in VGAT, the vesicular GABA transporter, and in neuroligin 2 (NLG2), a protein that, interacting with neurexins, ensures the cross-talk between the post- and presynaptic sites. Interestingly, hampering gephyrin function also produced a significant reduction in VGLUT, the vesicular glutamate transporter, an effect accompanied by a significant decrease in frequency of miniature excitatory postsynaptic currents. Overexpressing NLG2 in gephyrin-deprived neurons rescued GABAergic but not glutamatergic innervation, suggesting that the observed changes in the latter were not due to a homeostatic compensatory mechanism. Pulldown experiments demonstrated that gephyrin interacts not only with NLG2 but also with NLG1, the isoform enriched at excitatory synapses. These results suggest a key role of gephyrin in regulating transynaptic signaling at both inhibitory and excitatory synapses.
Project description:Pitx2, a paired-like homeodomain transcription factor, is expressed in post-mitotic neurons within highly restricted domains of the embryonic mouse brain. Previous reports identified critical roles for PITX2 in histogenesis of the hypothalamus and midbrain, but the cellular identities of PITX2-positive neurons in these regions were not fully explored. This study characterizes Pitx2 expression with respect to midbrain transcription factor and neurotransmitter phenotypes in mid-to-late mouse gestation. In the dorsal midbrain, we identified Pitx2-positive neurons in the stratum griseum intermedium (SGI) as GABAergic and observed a requirement for PITX2 in GABAergic differentiation. We also identified two Pitx2-positive neuronal populations in the ventral midbrain, the red nucleus, and a ventromedial population, both of which contain glutamatergic precursors. Our data suggest that PITX2 is present in regionally restricted subpopulations of midbrain neurons and may have unique functions that promote GABAergic and glutamatergic differentiation.
Project description:Hoarding disorder (HD) is a chronic disease that begins early in life and does not remission unless timely treated. A large number of factors affect the presentation of HD symptoms, including a strong possessive psychology of objects and neurocognitive functioning. However, the underlying neural mechanisms of the excessive hoarding behavior in HD are still unknown. Using viral infections and brain slice electrophysiology recordings, we found that increased glutamatergic neuronal activity and decreased GABAergic neuronal activity in medial prefrontal cortex (mPFC) accelerated the hoarding-like behavior in mice. Respectively, chemogenetic manipulation to reduce glutamatergic neuronal activity or enhance GABAergic neuronal activity could improve the hoarding-like behavioral response. These results reveal a critical role played by alterations in the activity of specific types of neurons in hoarding-like behavior, and that targeted therapies for HD may be possible by precisely modulating these types of neurons.
Project description:IRSp53 (also known as BAIAP2) is an abundant excitatory postsynaptic scaffolding protein implicated in autism spectrum disorders (ASD), schizophrenia, and attention-deficit/hyperactivity disorder (ADHD). IRSp53 is expressed in different cell types across different brain regions, although it remains unclear how IRSp53 deletion in different cell types affects brain functions and behaviors in mice. Here, we deleted IRSp53 in excitatory and inhibitory neurons in mice and compared resulting phenotypes in males and females. IRSp53 deletion in excitatory neurons driven by Emx1 leads to strong social deficits and hyperactivity without affecting anxiety-like behavior, whereas IRSp53 deletion in inhibitory neurons driven by Viaat has minimal impacts on these behaviors in male mice. In female mice, excitatory neuronal IRSp53 deletion induces hyperactivity but moderate social deficits. Excitatory neuronal IRSp53 deletion in male mice induces an increased ratio of evoked excitatory and inhibitory synaptic transmission (E/I ratio) in layer V pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC), whereas the same mutation does not alter the E/I ratio in female neurons. These results suggest that IRSp53 deletion in excitatory and inhibitory neurons and in male and female mice has distinct impacts on behaviors and synaptic transmission.
Project description:Hypothalamic proopiomelanocortin (POMC) neurons have traditionally been defined by their peptide transmitters, which are important regulators of energy balance and reward. Recent work shows that POMC neurons can also release the amino acid transmitters γ-aminobutyric acid (GABA) and glutamate, although studying GABAergic and glutamatergic populations of POMC neurons has been hindered by the difficulty in reliably identifying amino acid (AA) transmitter phenotypes. In the present study, fluorescent in situ hybridization and immunohistochemistry were used to identify POMC neurons and to detect the presence of mRNA for the transporters responsible for packaging either GABA (vesicular GABA transporter [vGAT]) or glutamate (vesicular glutamate transporter [vGLUT]) into vesicles, as well as the enzymes responsible for GABA synthesis, glutamic acid decarboxylase (GAD)65 and GAD67. Approximately 7% of POMC neurons expressed vGlut2 and the highest percentage of vGlut2-positive POMC cells were located in the rostral arcuate nucleus. Despite the reports of GABA release from POMC neurons, vGat was not detected in POMC neurons, although Gad65 and Gad67 were present in ~40% of POMC neurons. Approximately half of the vGlut2-expressing POMC cells also expressed Gad65. Markers of neurotransmitter phenotype were better detected by using in situ hybridization techniques rather than transgenic expression of fluorophores under the control of the vGat or Gad67 promoters. It is now clear that the expression of markers of AA phenotype provides a useful means to identify distinct subpopulations of POMC neurons. Additionally, the method described will be useful to explore the possibility that plasticity of AA phenotype is an important aspect of POMC neuron function.
Project description:The ventral pallidum (VP) is critical for invigorating reward seeking and is also involved in punishment avoidance, but how it contributes to such opposing behavioral actions remains unclear. Here, we show that GABAergic and glutamatergic VP neurons selectively control behavior in opposing motivational contexts. In vivo recording combined with optogenetics in mice revealed that these two populations oppositely encode positive and negative motivational value, are differentially modulated by animal's internal state, and determine the behavioral response during motivational conflict. Furthermore, GABAergic VP neurons are essential for movements toward reward in a positive motivational context but suppress movements in an aversive context. In contrast, glutamatergic VP neurons are essential for movements to avoid a threat but suppress movements in an appetitive context. Our results indicate that GABAergic and glutamatergic VP neurons encode the drive for approach and avoidance, respectively, with the balance between their activities determining the type of motivational behavior.
Project description:The CA1 region of the hippocampus contains both glutamatergic pyramidal cells and GABAergic interneurons. Numerous reports have characterized glutamatergic CAMK2A cell activity, showing how these cells respond to environmental changes such as local cue rotation and context re-sizing. Additionally, the long-term stability of spatial encoding and turnover of these cells across days is also well-characterized. In contrast, these classic hippocampal experiments have never been conducted with CA1 GABAergic cells. Here, we use chronic calcium imaging of male and female mice to compare the neural activity of VGAT and CAMK2A cells during exploration of unaltered environments and also during exposure to contexts before and after rotating and changing the length of the context across multiple recording days. Intriguingly, compared to CAMK2A cells, VGAT cells showed decreased remapping induced by environmental changes, such as context rotations and contextual length resizing. However, GABAergic neurons were also less likely than glutamatergic neurons to remain active and exhibit consistent place coding across recording days. Interestingly, despite showing significant spatial remapping across days, GABAergic cells had stable speed encoding between days. Thus, compared to glutamatergic cells, spatial encoding of GABAergic cells is more stable during within-session environmental perturbations, but is less stable across days. These insights may be crucial in accurately modeling the features and constraints of hippocampal dynamics in spatial coding.
Project description:For decades, it has been thought that glutamate and GABA are released by distinct neurons. However, some mouse neurons innervating the lateral habenula (LHb) co-release glutamate and GABA. Here, we mapped the distribution of neurons throughout the rat brain that co-express vesicular transporters for the accumulation of glutamate (VGluT2) or GABA (VGaT) and for GABA synthesis (GAD). We found concentrated groups of neurons that co-express VGluT2, VGaT, and GAD mRNAs within subdivisions of the ventral tegmental area (VTA), entopeduncular (EPN), and supramammillary (SUM) nuclei. Single axon terminals established by VTA, EPN, or SUM neurons form a common synaptic architecture involving asymmetric (putative excitatory) and symmetric (putative inhibitory) synapses. Within the LHb, which receives co-transmitted glutamate and GABA from VTA and EPN, VGluT2 and VGaT are distributed on separate synaptic vesicles. We conclude that single axon terminals from VGluT2 and VGaT co-expressing neurons co-transmit glutamate and GABA from distinct synaptic vesicles at independent synapses.