Project description:The aim of the present paper was to identify the major polyphenolic compounds and investigate the antioxidant, antimutagenic, and antimicrobial activities of industrially-derived cereal byproducts-wheat bran (WB) and oat bran (OB)-before (fresh) and after thermal processing (TP) (10 min, 80 °C), coupled with ultrasound-asssited extraction. The results showed that the thermal process improved the total phenolic content of WB by +22.49%, and of OB with +25.84%. After the TP, the phenolic concentration showed a significant relative percentage increase in the case of WB (ferulic acid +39.18%, vanillic acid +95.68%, apigenin-glucoside +71.96%, p-coumaric acid +71.91) and of OB (avenanthramide 2c +52.17%, dihydroxybenzoic acids +38.55%). The best antioxidant capacity was registered by OBTP followed by WBTP. The strongest antimicrobial inhibition was attributed to the WBTP sample. Both thermally processed matrices had strong antimutagenic activity toward S. typhimurium TA100. This thermal processing was tested on bran based on its practical application within the food industry, considering the design of different cereal byproducts derived from functional foods and nutraceuticals.
Project description:Improving zinc (Zn) content in wheat and its processed foods is an effective way to solve human Zn deficiency, which can cause a variety of diseases. This article summarizes the works on Zn in wheat grain, wheat processing, and wheat-derived foods. Grain Zn content in wheat was 31.84 mg·kg-1 globally but varied across continents, for example, 25.10 mg·kg-1 in Europe, 29.00 mg·kg-1 in Africa, 33.63 mg·kg-1 in Asia, and 33.91 mg·kg-1 in North America. Grain Zn content in wheat improved from 28.96 to 36.61 mg·kg-1 and that in flour increased from 10.51 to 14.82 mg·kg-1 after Zn fortification. Furthermore, Zn content varied in the different processed components of wheat; that is, Zn content was 12.58 mg·kg-1 in flour, 70.49 mg·kg-1 in shorts, and 86.45 mg·kg-1 in bran. Zinc content was also different in wheat-derived foods, such as 13.65 mg·kg-1 in baked food, 10.65 mg·kg-1 in fried food, and 8.03 mg·kg-1 in cooking food. Therefore, the suitable Zn fortification, appropriate processing, and food type of wheat are important to meet people's Zn requirement through wheat.
Project description:Nowadays, the agro-food industry generates high amounts of byproducts that may possess added value compounds with high functionality and/or bioactivity. Additionally, consumers' demand for healthier foodstuffs has increased over the last years, and thus the food industry has strived to answer this challenge. Byproducts are generally secondary products derived from primary agro-food production processes and represent an interesting and cheaper source of potentially functional ingredients, such as peptides, carotenoids, and phenolic compounds, thus promoting a circular economy concept. The existing body of work has shown that byproducts and their extracts may be successfully incorporated into foodstuffs, for instance, phenolic compounds from eggplant can be potentially used as a mulfitunctional food additive with antimicrobial, antioxidant, and food colorant properties. As such, the aim of this review is to provide insights into byproducts and their potential as new sources of foodstuffs additives.
Project description:In line with the need to better utilize agricultural resources, and valorize underutilized fractions, we have developed protocols to increase the use of wheat bran, to improve utilization of this resource to additional products. Here, we report sequential processing for extraction of starch, lipids, and proteins from wheat brans with two different particle sizes leaving a rest-material enriched in dietary fiber. Mild water-based extraction of starch resulted in maximum 81.7 ± 0.67% yield. Supercritical fluid extraction of lipids by CO2 resulted in 55.2 ± 2.4% yield. This was lower than the corresponding yield using Soxhlet extraction, which was used as a reference method, but allowed a continued extraction sequence without denaturation of the proteins remaining in the raw-material. Alkaline extraction of non-degraded proteins resulted in a yield corresponding to one third of the total protein in the material, which was improved to reach 62 ± 8% by a combination of wheat bran enzymes activation followed by Osborne fractionation. The remaining proteins were extracted in degraded form, resulting in maximum 91.6 ± 1.6% yield of the total proteins content. The remaining material in both fine and coarse bran had a fiber content that on average corresponded to 73 ± 3%. The current work allows separation of several compounds, which is enabling valorization of the bran raw-material into several products.
Project description:The seaweed Rugulopteryx okamurae, from the Pacific Ocean, is considered an invasive species in the Mediterranean Sea. In this work, the use of this seaweed is proposed for the development of bio-based plastic materials (bioplastics) as a possible solution to the pollution produced by the plastic industry. The raw seaweed Rugulopteryx okamurae was firstly blended with glycerol (ratios: 50/50, 60/40 and 70/30), and subsequently, they were processed by injection molding at a mold temperature of 90, 120 and 150 °C. The rheological properties (frequency sweep tests and temperature ramp tests) were obtained for blends before and after processing by injection molding. The functional properties of the bioplastics were determined by the water uptake capacity (WUC) values and further scanning electron microscopy (SEM). The results obtained indicated that E' was always greater than E", which implies a predominantly elastic behavior. The 70/30 ratio presents higher values for both the viscoelastic moduli and tensile properties than the rest of the systems (186.53 ± 22.80 MPa and 2.61 ± 0.51 MPa, respectively). The WUC decreased with the increase in seaweed in the mixture, ranging from 262% for the 50/50 ratio to 181% for the 70/30 ratio. When carrying out the study on molded bioplastic 70/30 at different temperatures, the seaweed content did not exert a remarkable influence on the final properties of the bioplastics obtained. Thus, this invasive species could be used as raw material for the manufacture of environmentally friendly materials processed by injection molding, with several applications such as food packaging, control-release, etc.
Project description:In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers.
Project description:Providencia sp. strain X1 showing the highest xylanase activity among six bacterial isolates was isolated from saw-dust decomposing site. Strain X1 produced cellulase-free extracellular xylanase, which was higher in wheat bran medium than in xylan medium, when cultivated at pH 8.0 and 35°C. Zymogram analysis of crude preparation of enzymes obtained while growing on wheat bran and birchwood xylan revealed the presence of seven and two distinct xylanases with estimated molecular weight of 33; 35; 40; 48; 60; 75; and 95 kDa and 33 and 44 kDa, respectively. The crude xylanases were produced on wheat bran medium and showed optimum activity at pH 9.0 and 60°C. The thermotolerance studies showed activity retention of 100% and 85% at 40°C and 60°C after 30 min preincubation at pH 9.0. It was tolerant to lignin, ferulic acid, syringic acid, and guaiacol and retained 90% activity after ethanol treatment. The enzyme preparation was also tolerant to methanol and acetone and showed good activity retention in the presence of metal ions such as Fe2+, Mg2+, Zn2+, and Ca2+. The crude enzyme preparation was classified as endoxylanase based on the product pattern of xylan hydrolysis. Pretreatment of kraft pulp with crude xylanases for 3 h at 60°C led to a decrease in kappa number by 28.5%. The properties of present xylanases make them potentially useful for industrial applications.
Project description:Wheat bran incorporation into biscuits may increase their nutritional value, however, it may affect dough rheology and baking performance, due to the effect of bran particles on dough structure and an increase in water absorption. This study analyzed the enrichment effect of wheat bran and arabinoxylans, the most important non-starch polysaccharides found in whole wheat flour, on dough rheology and thermal behaviour during processing of rotary-moulded biscuits. The objective was to understand the contribution of arabinoxylans during biscuit-making and their impact when incorporated as wheat bran. Refined flour was replaced at 25, 50, 75, or 100% by whole flour with different bran particle sizes (fine: 4% > 500 μm; coarse: 72% > 500 μm). The isolated effect of arabinoxylans was examined by preparing model flours, where refined flour was enriched with water-extractable and water-unextractable arabinoxylans. Wheat bran had the greatest impact on dough firmness and arabinoxylans had the greatest impact on the elastic response. The degree of starch gelatinization increased from 24 to 36% in biscuits enriched with arabinoxylans or whole flour and coarse bran. The microstructural analysis (SEM, micro-CT) suggested that fibre micropores may retain water inside their capillaries which can be released in a controlled manner during baking.
Project description:Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.
Project description:The addition of food derived antihypertensive peptides to the diet is considered a reasonable way to prevent and lower blood pressure. However, data about stability of antihypertensive peptides against different food-processing conditions are limited. In this study, through Sephadex G-15 gel chromatography and RP-HPLC separation, UPLC-ESI-MS/MS analysis and in silico screening, a novel ACE-inhibitory pentapeptide Ser-Ala-Pro-Pro-Pro (IC50: 915.03 μmol/L) was identified in quinoa bran globulin hydrolysate. The inhibition patterns on angiotensin-I-converting enzyme and safety of SAPPP were studied using molecular docking and in silico predication, respectively. Results demonstrated that SAPPP could noncompetitively bind to active sites PRO519 and SER461 of ACE through short hydrogen bonds. SAPPP was resistant to different pH values (2.0-10.0), pasteurization conditions, addition of Na+, Mg2+, Fe3+ or K+, and the simulated gastrointestinal digestion. In contrast, SAPPP was unstable against heating at 100 °C for more than 50 min and the treatment of Zn2+ (5 mmol/L). These results indicated that peptides derived from quinoa globulin hydrolysates can be added into foods for antihypertension.