Project description:Determining optimum irrigation termination periods for cotton (Gossypium hirsutum L.) is crucial for efficient utilization and conservation of finite groundwater resources of the Ogallala Aquifer in the Texas High Plains (THP) region. The goal of this study was to suggest optimum irrigation termination periods for different Evapotranspiration (ET) replacement-based irrigation strategies to optimize cotton yield and irrigation water use efficiency (IWUE) using the CROPGRO-Cotton model. We re-evaluated a previously evaluated CROPGRO-Cotton model using updated yield and in-season physiological data from 2017 to 2019 growing seasons from an IWUE experiment at Halfway, TX. The re-evaluated model was then used to study the effects of combinations of irrigation termination periods (between August 15 and September 30) and deficit/excess irrigation strategies (55%-115% ET-replacement) under dry, normal and wet years using weather data from 1978 to 2019. The 85% ET-replacement strategy was found ideal for optimizing irrigation water use and cotton yield, and the optimum irrigation termination period for this strategy was found to be the first week of September during dry and normal years, and the last week of August during wet years. Irrigation termination periods suggested in this study are useful for optimizing cotton production and IWUE under different levels of irrigation water availability.
Project description:The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analog. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulfate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.
Project description:Resilient planning demands not only resilient actions, but also resilient implementation, which promotes adaptive capacity for the attainment of the planned objectives. This requires, in the case of multi-level infrastructure systems, the simultaneous pursuit of bottom-up infrastructure planning for the promotion of adaptive capacity, and of top-down approaches for the achievement of global objectives and the reduction of structural vulnerabilities and imbalances. Though several authors have pointed out the need to balance bottom-up flexibility with top-down hierarchical control for better plan implementation, very few methods have yet been developed with this aim, least of all with a multi-objective perspective. This work addressed this lack by including, for the first time, the mitigation of urban vulnerability, the improvement of road network condition, and the minimization of the economic cost as objectives in a resilient planning process in which both actions and their implementation are planned for a controlled, sustainable development. Building on Urban planning support system (UPSS), a previously developed planning tool, the improved planning support system affords a planning alternative over the Spanish road network, with the best multi-objective balance between optimization, risk, and opportunity. The planning process then formalizes local adaptive capacity as the capacity to vary the selected planning alternative within certain limits, and global risk control as the duties that should be achieved in exchange. Finally, by means of multi-objective optimization, the method reveals the multi-objective trade-offs between local opportunity, global risk, and rights and duties at local scale, thus providing deeper understanding for better informed decision-making.
Project description:In arid areas, water shortage is threating agricultural sustainability, and strip-intercropping may serve as a strategy to alleviate the challenge. Here we show that strip-intercropping enhances the spatial distributions of soil water across the 0-110 cm rooting zones, improves the coordination of soil water sharing during the co-growth period, and provides compensatory effect for available soil water. In a three-year (2009-2011) experiment, shorter-season pea (Pisum sativum L.) was sown in alternate strips with longer-season maize (Zea mays L.) without or with an artificially-inserted root barrier (a solid plastic sheet) between the strips. The intercropped pea used soil water mostly in the top 20-cm layers, whereas maize plants were able to absorb water from deeper-layers of the neighboring pea strips. After pea harvest, the intercropped maize obtained compensatory soil water from the pea strips. The pea-maize intercropping without the root barrier increased grain yield by 25% and enhanced water use efficiency by 24% compared with the intercropping with the root barrier. The improvement in crop yield and water use efficiency was partly attributable to the coordinated soil water sharing between the inter-strips and the compensatory effect from the early-maturing pea to the late-maturing maize.
Project description:Blackgram, a protein-rich pulse crop (24%), is crucial for combating food insecurity, particularly in malnourished and economically weak countries. Enhancing blackgram production requires improved, input-saving management practices. Given the challenges of climate change and population growth, efficient water management is vital for increasing pulse productivity and water use efficiency with minimal investment. This study aimed to identify cost-effective irrigation methods to optimise blackgram yields. Experiments were conducted at the National Pulses Research Centre in Vamban, Pudukkottai, and the Agricultural College and Research Institute in Kumulur, Tiruchirappalli, during the kharif season of 2021 and 2022. The study compared different treatments of irrigation methods, such as check basin, raised bed, drip, sprinkler and rain hose irrigation. Results showed that the rain hose system maintained the highest soil moisture (23.93% at 10 cm depth and 19.71% at 20 cm depth). Even though drip irrigation resulted in a higher seed yield (1363 kg ha-1), the rain hose system proved to be more cost-effective, saving 27.09% in costs and achieving a 15.23% higher benefit-cost ratio. These findings suggest that the rain hose method, combined with current agronomic practices, is a viable low-cost technique for sustainable blackgram cultivation, optimising water use and maximising profits. This research provides valuable insights into water-saving irrigation methods for pulse crops.
Project description:Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN), lower maximum quantum yield (Fv/Fm), and lower effective quantum yield of PSII photochemistry (ΦPSII). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.
Project description:ObjectiveIt is of great importance to explore agronomic management measures for water conservation and cotton yield in arid areas.MethodsA four-year field experiment was conducted to evaluate cotton yield and soil water consumption under four row spacing configurations (high/low density with 66+10 cm wide, narrow row spacing, RS66+10H and RS66+10L; high/low density with 76 cm equal row spacing, RS76H and RS76L) and two irrigation amounts (CI:conventional drip irrigation; LI:limited drip irrigation) during the growing seasons in Shihezi, Xinjiang.ResultsA quadratic relationship was observed between the maximum LAI (LAImax) and seed yield. Canopy apparent transpiration rate(CAT), daily water consumption intensity (DWCI) and crop evapotranspiration (ETC) were positively and linearly correlated with LAI. The seed yields, lint yields, and ETC under CI were 6.6-18.3%,7.1-20.8% and 22.9-32.6%higher than those observed under LI, respectively. The RS66+10H under CI had the highest seed and lint yields. RS76L had an optimum LAImax range, which ensured a higher canopy apparent photosynthesis and daily dry matter accumulation and reached the same yield level as RS66+10H; however, soil water consumption in RS76L was reduced ETC by 51-60 mm at a depth of 20-60 cm at a radius of 19-38 cm from the cotton row,and water use efficiency increased by 5.6-8.3%compared to RS66+10H under CI.ConclusionA 5.0<LAImax<5.5 is optimum for cotton production in northern Xinjiang, and RS76L under CI is recommended for high yield and can further reduce water consumption. Under LI, the seed and lint yield of RS66+10H were 3.7-6.0% and 4.6-6.9% higher than those of RS76L, respectively. In addition, high-density planting can exploit the potential of soil water to increase cotton yields under water shortage conditions.
Project description:The diversity-productivity, diversity-invasibility, and diversity-stability hypotheses propose that increasing species diversity should lead, respectively, to increased average biomass productivity, invasion resistance, and stability. We tested these three hypotheses in the context of cover crop mixtures, evaluating the effects of increasing cover crop mixture diversity on aboveground biomass, weed suppression, and biomass stability. Twenty to forty cover crop treatments were replicated three or four times at eleven sites using eighteen species representing three cover crop species each from six pre-defined functional groups: cool-season grasses, cool-season legumes, cool-season brassicas, warm-season grasses, warm-season legumes, and warm-season broadleaves. Each species was seeded as a pure stand, and the most diverse treatment contained all eighteen species. Remaining treatments included treatments representing intermediate levels of cover crop species and functional richness and a no cover crop control. Cover crop seeding dates ranged from late July to late September with both cover crop and weed aboveground biomass being sampled prior to winterkill. Stability was assessed by evaluating the variability in cover crop biomass for each treatment across plots within each site. While increasing cover crop mixture diversity was associated with increased average aboveground biomass, we assert that this was the result of the average biomass of the pure stands being drawn down by low biomass species rather than due to niche complementarity or increased resource use efficiency. At no site did the highest biomass mixture produce more than the highest biomass pure stand. Furthermore, while increases in cover crop mixture diversity were correlated with increases in weed suppression and biomass stability, we argue that this was largely the result of diversity co-varying with aboveground biomass, and that differences in aboveground biomass rather than differences in diversity drove the differences observed in weed suppression and stability.
Project description:Two different field experiments were conducted at Punjab Agricultural University, Regional Research Station, Bathinda, (1) to manage optimum source-sink relationship through mepiquat chloride (MC) in Bt cotton hybrid and (2) to find feasibility of MC application on non hybrid compact cotton genotype under high density planting system (HDPS) with varied nitrogen levels. Raw data for growth and yield parameters was recorded from each treatment and statistically analysed. In experiment (1), application of MC 75 g active ingredient per hectare (a.i./ha) irrespective of splits between 60 and 90 days after sowing (DAS) was effective for significant reduction in plant height, increase in bolls per plant as compared to control and de-topping treatments. All these led to significantly highest seed cotton yield (SCY) and monetary returns under MC 75 g a.i./ha as compared to de-topping treatment. In experiment (2) of high density planting of cotton, sympods per plant, bolls per plant, SCY as well as nitrogen use efficiency (NUE) and monetary returns were increased significantly with 25% increase in recommended dose of nitrogen. Among the growth retardants, application of MC 20 g a.i./ha once and twice reduced plant height, increased sympods and boll per plant significantly which led to significantly higher SCY production as compared to control. Similarly, NUE and monetary returns were also significantly higher under MC treatments as compared to control. Application of MC 75 g a.i./ha in either two or three splits on Bt cotton hybrid under normal plant density and MC 20-40 g a.i./ha on non Bt compact genotype under high plant density optimized source-sink relationship which improve crop productivity and profitability.