Project description:More than 930,000 protein-protein interactions (PPIs) have been identified in recent years, but their physicochemical properties differ from conventional drug targets, complicating the use of conventional small molecules as modalities. Cyclic peptides are a promising modality for targeting PPIs, but it is difficult to predict the structure of a target protein-cyclic peptide complex or to design a cyclic peptide sequence that binds to the target protein using computational methods. Recently, AlphaFold with a cyclic offset has enabled predicting the structure of cyclic peptides, thereby enabling de novo cyclic peptide designs. We developed a cyclic peptide complex offset to enable the structural prediction of target proteins and cyclic peptide complexes and found AlphaFold2 with a cyclic peptide complex offset can predict structures with high accuracy. We also applied the cyclic peptide complex offset to the binder hallucination protocol of AfDesign, a de novo protein design method using AlphaFold, and we could design a high predicted local-distance difference test and lower separated binding energy per unit interface area than the native MDM2/p53 structure. Furthermore, the method was applied to 12 other protein-peptide complexes and one protein-protein complex. Our approach shows that it is possible to design putative cyclic peptide sequences targeting PPI.
Project description:Currently, various pharmaceutical modalities are being developed rapidly. Targeting protein-protein interactions (PPIs) is an important objective in such development. Cyclic peptides, because they have good specificity and activity, have been attracting much attention as an alternative to antibody drugs. However, cyclic peptides involve some difficulties, such as oral availability and cell permeability. Therefore, while small-molecule drugs still present many benefits, the screening of functional small-molecule compounds targeting PPIs requires a great deal of time and effort, including structural analysis of targets and hits. In this study, we investigated a rational two-step strategy to design small-molecule compounds targeting PPIs. First, we obtained inhibitory cyclic peptides that bind to cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) by ribosomal display using PUREfrex® (PUREfrex®RD) to get structure-activity relation (SAR) information. Based on that information, we converted cyclic peptides to small molecules using PepMetics® scaffolds that can mimic the α-helix or β-turn of the peptide. Finally, we succeeded in generating small-molecule compounds with good IC50 (single-digit μM values) against CTLA-4. This strategy is expected to be a useful approach for small-molecule design targeting PPIs, even without having structural information such as that associated with X-ray crystal structures.
Project description:Sunflower trypsin inhibitor-1 (SFTI-1) structure is used for designing grafted peptides as a possible therapeutic agent. The grafted peptide exhibits multiple conformations in solution due to the presence of proline in the structure of the peptide. To lock the grafted peptide into a major conformation in solution, a dibenzofuran moiety (DBF) was incorporated in the peptide backbone structure, replacing the Pro-Pro sequence. NMR studies indicated a major conformation of the grafted peptide in solution. Detailed structural studies suggested that SFTI-DBF adopts a twisted beta-strand structure in solution. The surface plasmon resonance analysis showed that SFTI-DBF binds to CD58 protein. A model for the protein-SFTI-DBF complex was proposed based on docking studies. These studies suggested that SFTI-1 grafted peptide can be used to design stable peptides for therapeutic purposes by grafting organic functional groups and amino acids. However, when a similar strategy was used with another grafted peptide, the resulting peptide did not produce a single major conformation, and its biological activity was lost. Thus, conformational constraints depend on the sequence of amino acids used for SFTI-1 grafting.
Project description:Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Project description:The geometry of a molecule plays a significant role in determining its physical and chemical properties. Despite its importance, there are relatively few studies on ring puckering and conformations, often focused on small cycloalkanes, 5- and 6-membered carbohydrate rings, and specific macrocycle families. We lack a general understanding of the puckering preferences of medium-sized rings and macrocycles. To address this, we provide an extensive conformational analysis of a diverse set of rings. We used Cremer-Pople puckering coordinates to study the trends of the ring conformation across a set of 140 000 diverse small molecules, including small rings, macrocycles, and cyclic peptides. By standardizing using key atoms, we show that the ring conformations can be classified into relatively few conformational clusters, based on their canonical forms. The number of such canonical clusters increases slowly with ring size. Ring puckering motions, especially pseudo-rotations, are generally restricted and differ between clusters. More importantly, we propose models to map puckering preferences to torsion space, which allows us to understand the inter-related changes in torsion angles during pseudo-rotation and other puckering motions. Beyond ring puckers, our models also explain the change in substituent orientation upon puckering. We also present a novel knowledge-based sampling method using the puckering preferences and coupled substituent motion to generate ring conformations efficiently. In summary, this work provides an improved understanding of general ring puckering preferences, which will in turn accelerate the identification of low-energy ring conformations for applications from polymeric materials to drug binding.
Project description:The introduction of non-natural modules could provide unprecedented control over folding/unfolding behavior, conformational stability, and biological function of proteins. Success requires the interrogation of candidate modules in natural contexts. Here, expressed protein ligation is used to replace a reverse turn in bovine pancreatic ribonuclease (RNase A) with a synthetic ?-dipeptide: ?²-homoalanine-?³-homoalanine. This segment is known to adopt an unnatural reverse-turn conformation that contains a 10-membered ring hydrogen bond, but one with a donor-acceptor pattern opposite to that in the 10-membered rings of natural reverse turns. The RNase A variant has intact enzymatic activity, but unfolds more quickly and has diminished conformational stability relative to native RNase A. These data indicate that hydrogen-bonding pattern merits careful consideration in the selection of beneficial reverse-turn surrogates.
Project description:Targeting protein surfaces and protein-protein interactions (PPIs) with small molecules is a frontier goal of chemical biology and provides attractive therapeutic opportunities in drug discovery. The molecular properties of protein surfaces, including their shallow features and lack of deep binding pockets, pose significant challenges, and as a result have proved difficult to target. Peptides are ideal candidates for this mission due to their ability to closely mimic many structural features of protein interfaces. However, their inherently low intracellular stability and permeability and high in vivo clearance have thus far limited their biological applications. One way to improve these properties is to constrain the secondary structure of linear peptides by cyclisation. Herein we review various classes of cyclic and macrocyclic peptides as chemical probes of protein surfaces and modulators of PPIs. The growing interest in this area and recent advances provide evidence of the potential of developing peptide-like molecules that specifically target these interactions.
Project description:Nonribosomal peptides (NRPs) are a type of secondary metabolites mostly originated from microorganisms such as bacteria and fungi. Their proteolytic stability, highly selective bioactivity, and microorganism-specificity have made them an attractive source of drugs for the pharmaceutical industry. Herein, with microcystins (MCs) as a NRP model, we, for the first time, proposed a sensitive method to study the interactions between NRPs and the protein nanopore. Due to the large molecular size (~3 nm diameter) of MCs and their net negative charges, MCs failed to translocate through the α-hemolysin (α-HL) protein channel. Our results demonstrated that the biomolecular interaction of MC-α-HL protein was significantly affected by the applied potential bias. The constant blockage amplitude in the voltage-dependent studies indicated that the current modulation events were dominantly contributed to the bumping interaction between MCs and the α-HL protein under the electrophoretic force. The mean residence time of the bumping events exhibited a two-stage decrease (from 1.90 ms to 1.02 ms, and from 1.02 ms to 0.69 ms) at the threshold voltages of -70 mV and -100 mV, respectively. Using our strategy (i.e., based on their electrophoretic driven interaction with the α-HL protein pore), discrimination of different MC molecules (MC-LR, MC-RR, MC-YR and linear analog) with varied branched residues could be accomplished. This work should provide an insight in developing a rapid and effective method for the identification of cyclic NRPs as valuable biomarkers for fungal infections.
Project description:Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals.
Project description:Peptide macrocycles are promising therapeutics for a variety of disease indications due to their overall metabolic stability and potential to make highly selective binding interactions with targets. Recent advances in covalent macrocycle peptide discovery, driven by phage and mRNA display methods, have enabled the rapid identification of highly potent and selective molecules from large libraires of diverse macrocycles. However, there are currently limited examples of macrocycles that can be used to disrupt protein-protein interactions and even fewer examples that function by formation of a covalent bond to a target protein. In this work, we describe a directed counter-selection method that enables identification of covalent macrocyclic ligands targeting a protein-protein interaction using a phage display screening platform. This method utilizes binary and ternary screenings of a chemically modified phage display library, employing the stable and weakly reactive aryl fluorosulfate electrophile. We demonstrate the utility of this approach using the SARS-CoV-2 Spike-ACE2 protein-protein interaction and identify multiple covalent macrocyclic inhibitors that disrupt this interaction. The resulting compounds displayed antiviral activity against live virus that was irreversible after washout due to the covalent binding mechanism. These results highlight the potential of this screening platform for developing covalent macrocyclic drugs that disrupt protein-protein interactions with long lasting effects.