Project description:Bioconjugation technologies have revolutionized the practice of biology and medicine by allowing access to novel biomolecular scaffolds. New methods for residue-selective bioconjugation are highly sought to expand the toolbox for a variety of bioconjugation applications. Herein we report a site-selective methionine bioconjugation protocol that uses photoexcited lumiflavin to generate open-shell intermediates. This reduction-potential-gated strategy enables access to residues unavailable with traditional nucleophilicity-based conjugation methods. To demonstrate the versatility and robustness of this new protocol, we have modified various proteins and further utilized this functional handle to append diverse biological payloads.
Project description:State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.
Project description:The molecular ruby [Cr(tpe) 2 ] 3+ and the tris(bipyridine) chromium(III) complex [Cr(dmcbpy) 3 ] 3+ as well as the tris(bipyrazine)ruthenium(II) complex [Ru(bpz) 3 ] 2+ were employed in the visible light-induced radical cation [4+2] cycloaddition (tpe = 1,1,1-tris(pyrid-2-yl)ethane, dmcbpy = 4,4'-dimethoxycarbonyl-2,2'-bipyridine, bpz = 2,2'-bipyrazine), while [Cr(ddpd) 2 ] 3+ serves as a control system (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine). Along with an updated mechanistic proposal for the CrIII driven catalytic cycle based on redox chemistry, Stern-Volmer analyses, UV/Vis/NIR spectroscopic and nanosecond laser flash photolysis studies, we demonstrate that the very weakly absorbing photocatalyst [Cr(tpe) 2 ] 3+ outcompetes [Cr(dmcbpy) 3 ] 3+ and even [Ru(bpz) 3 ] 2+ in particular at low catalyst loadings, which appears contradictory at first sight. The high photostability, the reversible redoxchemistry and the very long excited state lifetime account for the exceptional performance and even reusability of [Cr(tpe) 2 ] 3+ in this photoredox catalytic system.
Project description:Carbon-nitrogen bond activation, via uranyl photoredox catalysis with water, enabled the conversion of 40 protogenetic anilines, 8 N-substituted anilines and 9 aniline-containing natural products/pharmaceuticals to the corresponding phenols in an ambient environment. A single-electron transfer process between a protonated aniline and uranyl catalyst, which was disclosed by radical quenching experiments and Stern-Volmer analysis, facilitated the following oxygen atom transfer process between the radical cation of protonated anilines and uranyl peroxide originating from water-splitting. 18O labeling and 15N tracking unambiguously depicted that the oxygen came from water and amino group left as ammonium salt. The 100-fold efficiency of the flow operation demonstrated the great potential of the conversion process for industrial synthetic application.
Project description:Hypervalent alkylsilicates represent new and readily accessible precursors for the generation of alkyl radicals under photoredox conditions. Alkyl radicals generated from such silicates serve as effective hydrogen atom abstractors from thiols, furnishing thiyl radicals. The reactive sulfur species generated in this manner can be funneled into a nickel-mediated cross-coupling cycle employing aromatic bromides to furnish thioethers. The serendipitous discovery of this reaction and its utilization for the thioetherification of various aryl and heteroaryl bromides with a diverse array of thiols is described. The S-H selective H atom abstraction event enables a wide range of functional groups, including those bearing protic moieties, to be tolerated.
Project description:Substituted alkenes are pivotal structural motifs found in pharmaceuticals and agrochemicals. Although numerous methods have been developed to construct substituted alkenes, a generally efficient, mild, catalytic platform for the conversion of alkynes to this highly functionalized scaffold via successive C-C bond forming steps remains in high demand. Here we describe an intermolecular, regio- and syn-stereoselective alkylarylation of terminal alkynes with tertiary alkyl oxalates via photoredox-Ni dual catalysis. This catalytic protocol, synergistically combining Ir/Ni-catalyzed alkyne difunctionalization with photoinduced alkene isomerization, affords trisubstituted alkenes with excellent efficiency and syn-stereoselectivity. The mild conditions tolerate many functional groups, allowing for a broad scope with respect to terminal alkynes, aryl bromides, and alkyl oxalates.
Project description:State-of-the art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. We describe the development of targeted aryl azide activation via deep red light photoredox catalysis and its use in photocatalyzed proximity labeling. We demonstrate that aryl azides are converted to triplet nitrenes via a novel redox-centric mechanism and show that its spatially localized-formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labeling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumor selective expression with EpCAM.
Project description:Direct C-H functionalization of aromatic compounds is a useful synthetic strategy that has garnered much attention because of its application to pharmaceuticals, agrochemicals, and late-stage functionalization reactions on complex molecules. On the basis of previous methods disclosed by our lab, we sought to develop a predictive model for site selectivity and extend this aryl functionalization chemistry to a selected set of heteroaromatic systems commonly used in the pharmaceutical industry. Using electron density calculations, we were able to predict the site selectivity of direct C-H functionalization in a number of heterocycles and identify general trends observed across heterocycle classes.
Project description:Late-stage synthesis of α,β-unsaturated aryl ketones remains an unmet challenge in organic synthesis. Reported herein is a photocatalytic non-chain-radical aroyl chlorination of alkenes by a 1,3-chlorine atom shift to form β-chloroketones as masked enones that liberate the desired enones upon workup. This strategy suppresses side reactions of the enone products. The reaction tolerates a wide array of functional groups and complex molecules including derivatives of peptides, sugars, natural products, nucleosides, and marketed drugs. Notably, addition of 2,6-di-tert-butyl-4-methyl-pyridine enhances the quantum yield and efficiency of the cross-coupling reaction. Experimental and computational studies suggest a mechanism involving PCET, formation and reaction of an α-chloro-α-hydroxy benzyl radical, and 1,3-chlorine atom shift.