Project description:It is an increasingly mature application solution that triboelectric nanogenerator (TENG) supplies power to electronic devices through its power management system (PMS). However, the previous PMS is able to manage a limited voltage magnitude and the energy storage elements are limited to capacitors. This work proposes an ultrahigh voltage PMS (UV-PMS) to realize the charging of commercial lithium cells (LCs) by TENG. The design of UV-PMS enables energy management of TENGs with ultrahigh open-circuit voltages up to 3500 V and boosts the peak charging current from 30.9 µA to 2.77 mA, an increase of 89.64 times. With the introduction of UV-PMS, the effective charging capacity of LC charged by a TENG at a working frequency of 1.5 Hz for 1 h comes to 429.7 µAh, making a 75.3 times enhancement compared to charging by TENG directly. The maximum charging power comes to 1.56 mW. The energy storage efficiency is above 97% and the overall charge efficiency can be maintained at 81.2%. This work provides a reliable strategy for TENG to store energy in LC, and has promising applications in energy storage, LC's life, and self-powered systems.
Project description:To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.
Project description:Triboelectric nanogenerator (TENG) is a promising technology for harvesting energy from various sources, such as human motion, wind and vibration. At the same time, a matching backend management circuit is essential to improve the energy utilization efficiency of TENG. Therefore, this work proposes a power regulation circuit (PRC) suitable for TENG, which is composed of a valley-filling circuit and a switching step-down circuit. The experimental results indicate that after incorporating a PRC, the conduction time of each cycle of the rectifier circuit doubles, increasing the number of current pulses in the TENG output and resulting in an output charge that is 1.6 fold that of the original circuit. Compared with the initial output signal, the charging rate of the output capacitor increased significantly by 75% with a PRC at a rotational speed of 120 rpm, significantly improving the utilization efficiency of the TENG's output energy. At the same time, when the TENG powers LEDs, the flickering frequency of LEDs is reduced after adding a PRC, and the light emission is more stable, which further verifies the test results. The PRC proposed in this study can enable the energy harvested by the TENG to be utilized more efficiently, which has a certain promoting effect on the development and application of TENG technology.
Project description:As a new energy harvesting technology, triboelectric nanogenerators are widely used for vibration mechanical energy harvesting. However, the current schemes ignore the composite characteristics of vibration, with problems such as utilization and low collection efficiency. In this paper, a random resonance cantilever beam triboelectric nanogenerator (RCB-TENG) with dual-mode coupled is presented, the working mode is a coupling form of in-plane sliding and vertical contact-separation that can effectively collect complex vibration energy in transverse and longitudinal directions. The influences of the structural parameters of the RCB-TENG and different dielectric materials on the output performance are systematically investigated. The single vibration module achieved a power density of 463.56 mW/m2 and a transfer charge of 10.7 μC at a vibration frequency of 46 Hz, an increase in power density, and a transfer charge of 4.94 and 3.82 times, respectively, compared to the conventional contact-separation mode. Finally, the RCB-TENG was tested in practice, and it was observed that nine 1 W commercial LED bulbs and 500 5 mm diameter LED lamps were successfully lit. This work offers new ideas for distributed energy harvesting technologies and holds broad promise in the field of energy harvesting from wind, water, wave, and random vibrations caused by mechanical energy.
Project description:The environmentally friendly harvesting of wind energy is an effective technique for achieving carbon neutrality and a green economy. In this work, a core-shell triboelectric nanogenerator (CS-TENG) for harvesting wind energy is demonstrated and the device structure parameters are optimized. The core-shell structure enables the CS-TENG to respond sensitively to wind from any direction and generate electrical output on the basis of the vertical contact-separation mode. A single device can generate a maximum power density of 0.14 W/m3 and can power 124 light-emitting diodes. In addition, wind energy can be harvested even at a wind speed as low as 2.3 m/s by paralleling CS-TENGs of different sizes. Finally, a self-powered water quality testing system that uses the CS-TENG as its power supply is built. The CS-TENG exhibits the advantages of a simple structure, environmentally friendly materials, low cost, and simple fabrication process. These features are of considerable significance for the development of green energy harvesting devices.
Project description:The arch-shaped single electrode based triboelectric nanogenerator (TENG) is fabricated using thin film of reduced graphene oxide nanoribbons (rGONRs) with polyvinylidene fluoride (PVDF) polymer used as binder to effectively convert mechanical energy into electrical energy. The incorporation of rGONRs in PVDF polymer enhances average surface roughness of rGONRs/PVDF thin film. With the combination of the enhancement of average roughness and production of functional groups, which indicate improve charge storage capacity of prepared film. Furthermore, the redox peaks obtained through cyclic voltammetry were identified more in rGONRs/PVDF composite in comparison to pristine rGONRs to confirm charge transfer capability of film. Herein, the output performance was discussed experimentally as well as theoretically, maximum voltage was obtained to be 0.35 V. The newly designed TENG to harvest mechanical energy and opens up many new avenues of research in the energy harvesting applications.
Project description:Triboelectric nanogenerators (TENG) have shown great potential in harvesting energy from water. For the TENG that harvests water energy, surface hydrophobicity is crucial for its performance. In this paper, we prepare a hydrophobic composite film of Polyvinylidene Fluoride/Polydimethylsiloxane/Polytetrafluoroethylene (PVDF/PDMS/PTFE) and an electrode of Polyaniline/Carbon nanotubes/Silver nanowires (PANI/CNTs/AgNWs) by electrospinning technology and a doping method, respectively, which are served as the friction layer and top electrode of TENG. The contact angle of the hydrophobic film and electrode both reach over 120°, which makes the separation process between water and the interface complete and promotes the output of TENG. The open-circuit voltage (Voc) and short-circuit current (Isc) can reach 150 V and 60 μA approximately. In addition, the composite electrode can be applied in the preparation of complex electrode shapes. Furthermore, the different reactions of TENG to different liquids indicate that it may contribute to liquid-type sensing systems. This work presents an efficient approach to fabricating hydrophobic films and electrodes, laying a foundation for the development of TENG for harvesting water energy.
Project description:The instability of the ocean waves, such as intermittence, randomness, and irregularity, greatly affects the application of a triboelectric nanogenerator (TENG) in its aspects and leads to the irregularity and uncontrollability of its output performance. Hence, the energy storage TENG (ES-TENG) based on the ratchet mechanism is proposed in this work. The ES-TENG uses the ratchet mechanism to store the wave energy in the clockwork spring and then releases it in a centralized way to convert the wave energy into electric energy. When the ES-TENG adopts this method, the change of external excitation does not affect its output performance. Simultaneously, the shell of the ES-TENG is duck-shaped, which can better adapt to the wave environment. The peak power, open-circuit voltage, and short-circuit current of the ES-TENG are 6.2 mW, 495 V, and 19 μA, respectively. In the simulated wave experiment, the ES-TENG can successfully drive a temperature sensor. In summary, this work shows an economic, environmental friendly TENG that can adapt to the wave motion, and its output performance is not affected by wave instability, which has an important guiding significance for the further development and utilization of TENG in ocean energy.
Project description:Water waves are a continuously generated renewable source of energy. However, their random motion and low frequency pose significant challenges for harvesting their energy. Herein, we propose a spherical hybrid triboelectric nanogenerator (SH-TENG) that efficiently harvests the energy of low frequency, random water waves. The SH-TENG converts the kinetic energy of the water wave into solid⁻solid and solid⁻liquid triboelectric energy simultaneously using a single electrode. The electrical output of the SH-TENG for six degrees of freedom of motion in water was investigated. Further, in order to demonstrate hybrid energy harvesting from multiple energy sources using a single electrode on the SH-TENG, the charging performance of a capacitor was evaluated. The experimental results indicate that SH-TENGs have great potential for use in self-powered environmental monitoring systems that monitor factors such as water temperature, water wave height, and pollution levels in oceans.
Project description:To combine the advantages of elastic and nonelastic triboelectric materials, this work proposes a new type of triboelectric nanogenerator (TENG) based on stacking -the stacked FKM/PU TENG. By stacking the elastomer polyurethane (PU) and the nonelastomer fluororubber (FKM), the FKM/PU TENG combines the inherent triboelectric characteristics of both materials and the unique elasticity of PU to achieve an output performance that is much higher than that of the FKM-TENG or the PU-TENG. The maximum instantaneous open-circuit voltage and short-circuit current of the FKM/PU TENG reach 661 V and 71.2 μA, respectively. Under the limiting conditions of 3 Hz and maximum compression, this device can attain a maximum power density of 49.63 W/m3 and light more than 500 LEDs. Therefore, stacking materials with different properties gives the FKM/PU TENG high output performance and great application potential, which can contribute to future development of discrete mechanical energy harvesting.