Project description:We used microarrays to investigate gene expression changes in leukemic cells from Pax5+/- mice treated with antibiotics. Precursor B cell acute lymphoblastic leukemia (pB-ALL), the most common type of childhood leukemia, is frequently characterized by the cooperation of a genetic predisposition acquired in utero and secondary oncogenic events taking place only in a fraction of predisposed children after birth. Although predisposition can be detected at birth, it is currently unknown which factors determine the development of overt leukemia in genetic carriers and how this can be potentially prevented. Experimental studies have shown that infectious stimuli promote disease onset in genetically predisposed mice. Here, we analyzed the impact of the microbiome on leukemogenesis in a mouse model (Pax5+/- mice) that faithfully mimicks genetic predisposition and leukemogenesis of human pB-ALL related to the synergy of genetic predisposition and exposure to a natural infectious environment. Employing 16S rRNA sequencing and machine learning we can accurately predict a distinct gut microbiome which is determined by a specific constitutional genetic variant. Deprivation of the gut microbiome by antibiotic treatment enhanced pB-ALL development in Pax5+/- predisposed (63% vs. 22%) but not in wildtype mice (0%). This finding was observed in the presence but also -to a lesser extent- in the absence of a natural, infectious environment (48%). The composition of the gut microbiome constitutes a biomarker signature and allows to identify specifically those Pax5+/- mice that developed leukemia. This indicates that the gut microbiome can be used to identify carriers at risk to develop leukemia and to reduce this risk by early-life interventions.
Project description:The majority of childhood leukemias are precursor B-cell acute lymphoblastic leukemias (pB-ALLs) caused by a combination of prenatal genetic predispositions and oncogenic events occurring after birth. Although genetic predispositions are frequent in children (>1% to 5%), fewer than 1% of genetically predisposed carriers will develop pB-ALL. Although infectious stimuli are believed to play a major role in leukemogenesis, the critical determinants are not well defined. Here, by using murine models of pB-ALL, we show that microbiome disturbances incurred by antibiotic treatment early in life were sufficient to induce leukemia in genetically predisposed mice, even in the absence of infectious stimuli and independent of T cells. By using V4 and full-length 16S ribosomal RNA sequencing of a series of fecal samples, we found that genetic predisposition to pB-ALL (Pax5 heterozygosity or ETV6-RUNX1 fusion) shaped a distinct gut microbiome. Machine learning accurately (96.8%) predicted genetic predisposition using 40 of 3983 amplicon sequence variants as proxies for bacterial species. Transplantation of either wild-type (WT) or Pax5+/- hematopoietic bone marrow cells into WT recipient mice revealed that the microbiome is shaped and determined in a donor genotype-specific manner. Gas chromatography-mass spectrometry (GC-MS) analyses of sera from WT and Pax5+/- mice demonstrated the presence of a genotype-specific distinct metabolomic profile. Taken together, our data indicate that it is a lack of commensal microbiota rather than the presence of specific bacteria that promotes leukemia in genetically predisposed mice. Future large-scale longitudinal studies are required to determine whether targeted microbiome modification in children predisposed to pB-ALL could become a successful prevention strategy.
Project description:BackgroundFructo-oligosaccharides (FOS), inulin, and galacto-oligosaccharides (GOS) are widely recognized prebiotics that profoundly affect the intestinal microbiota, including stimulation of bifidobacteria and lactobacilli, and are reported to elicit several health benefits. The combination of dietary FOS and inulin with calcium phosphate was reported to stimulate commensal Lactobacillus populations and protect the host against pathogenic Enterobacteriaceae, but little is known about the effects of GOS in diets with a different level of calcium phosphate.MethodsWe investigated the microbiome changes elicited by dietary supplementation with GOS or inulin using diets with high (100 mmol/kg) and low (30 mmol/kg) calcium phosphate levels in adult Wistar rats. Rats were acclimatized to the respective experimental diets for 14 days, after which fecal material was collected, DNA was extracted from fecal material, and the V3‑V4 region of the bacterial 16S rRNA gene was amplified with PCR, followed by microbial composition analysis. In tandem, the organic acid profiles of the fecal material were analyzed.ResultsFeeding rats non-supplemented (no prebiotic-added) diets revealed that diets rich in calcium phosphate favored members of the Firmicutes and increased fecal lactic, succinic, acetic, propionic, and butyric acid levels. In contrast, relatively low dietary calcium phosphate levels promoted the abundance of mucin degrading genera like Akkermansia and Bacteroides, and resulted in increased fecal propionic acid levels and modest increases in lactic and butyric acid levels. Irrespective of the calcium phosphate levels, supplementation with GOS or inulin strongly stimulated Bifidobacterium, while only high calcium phosphate diets increased the endogenous Faecalibaculum populations.ConclusionsDespite the prebiotic's substantial difference in chemical structure, sugar composition, oligomer size, and the microbial degradation pathway involved in their utilization, inulin and GOS modulated the gut microbiota very similarly, in a manner that strongly depended on the dietary calcium phosphate level. Therefore, our study implies that the collection of detailed diet information including micronutrient balance is necessary to correctly assess diet-driven microbiota analysis. Video Abstract.
Project description:Microbial exopolysaccharides (EPSs), having great structural diversity, have gained tremendous interest for their prebiotic effects. In the present study, mice models were used to investigate if microbial dextran and inulin-type EPSs could also play role in the modulation of microbiomics and metabolomics by improving certain biochemical parameters, such as blood cholesterol and glucose levels and weight gain. Feeding the mice for 21 days on EPS-supplemented feed resulted in only 7.6 ± 0.8% weight gain in the inulin-fed mice group, while the dextran-fed group also showed a low weight gain trend as compared to the control group. Blood glucose levels of the dextran- and inulin-fed groups did not change significantly in comparison with the control where it increased by 22 ± 5%. Moreover, the dextran and inulin exerted pronounced hypocholesterolemic effects by reducing the serum cholesterol levels by 23% and 13%, respectively. The control group was found to be mainly populated with Enterococcus faecalis, Staphylococcus gallinarum, Mammaliicoccus lentus and Klebsiella aerogenes. The colonization of E. faecalis was inhibited by 59-65% while the intestinal release of Escherichia fergusonii was increased by 85-95% in the EPS-supplemented groups, respectively, along with the complete inhibition of growth of other enteropathogens. Additionally, higher populations of lactic acid bacteria were detected in the intestine of EPS-fed mice as compared to controls.
Project description:Societal lifestyle changes, especially increased consumption of a high-fat diet lacking dietary fibers, lead to gut microbiota dysbiosis and enhance the incidence of adiposity and chronic inflammatory disease. We aimed to investigate the metabolic effects of inulin with different degrees of polymerization on high-fat diet-fed C57BL/6 J mice and to evaluate whether different health outcomes are related to regulation of the gut microbiota. Short-chain and long-chain inulins exert beneficial effects through alleviating endotoxemia and inflammation. Antiinflammation was associated with a proportional increase in short-chain fatty acid-producing bacteria and an increase in the concentration of short-chain fatty acids. Inulin might decrease endotoxemia by increasing the proportion of Bifidobacterium and Lactobacillus, and their inhibition of endotoxin secretion may also contribute to antiinflammation. Interestingly, the beneficial health effects of long-chain inulin were more pronounced than those of short-chain inulin. Long-chain inulin was more dependent than short-chain inulin on species capable of processing complex polysaccharides, such as Bacteroides. A good understanding of inulin-gut microbiota-host interactions helps to provide a dietary strategy that could target and prevent high-fat diet-induced endotoxemia and inflammation through a prebiotic effect.
Project description:BackgroundEpidemiologic evidence and animal studies implicate dietary emulsifiers in contributing to the increased prevalence of diseases associated with intestinal inflammation, including inflammatory bowel diseases and metabolic syndrome. Two synthetic emulsifiers in particular, carboxymethylcellulose and polysorbate 80, profoundly impact intestinal microbiota in a manner that promotes gut inflammation and associated disease states. In contrast, the extent to which other food additives with emulsifying properties might impact intestinal microbiota composition and function is not yet known.MethodsTo help fill this knowledge gap, we examined here the extent to which a human microbiota, maintained ex vivo in the MiniBioReactor Array model, was impacted by 20 different commonly used dietary emulsifiers. Microbiota density, composition, gene expression, and pro-inflammatory potential (bioactive lipopolysaccharide and flagellin) were measured daily.ResultsIn accordance with previous studies, both carboxymethylcellulose and polysorbate 80 induced a lasting seemingly detrimental impact on microbiota composition and function. While many of the other 18 additives tested had impacts of similar extent, some, such as lecithin, did not significantly impact microbiota in this model. Particularly stark detrimental impacts were observed in response to various carrageenans and gums, which altered microbiota density, composition, and expression of pro-inflammatory molecules.ConclusionsThese results indicate that numerous, but not all, commonly used emulsifiers can directly alter gut microbiota in a manner expected to promote intestinal inflammation. Moreover, these data suggest that clinical trials are needed to reduce the usage of the most detrimental compounds in favor of the use of emulsifying agents with no or low impact on the microbiota. Video abstract.
Project description:The apolipoprotein ε4 allele (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD). APOE4 carriers develop systemic metabolic dysfunction decades before showing AD symptoms. Accumulating evidence shows that the metabolic dysfunction accelerates AD development, including exacerbated amyloid-beta (Aβ) retention, neuroinflammation and cognitive decline. Therefore, preserving metabolic function early on may be critical to reducing the risk for AD. Here, we show that inulin increases beneficial microbiota and decreases harmful microbiota in the feces of young, asymptomatic APOE4 transgenic (E4FAD) mice and enhances metabolism in the cecum, periphery and brain, as demonstrated by increases in the levels of SCFAs, tryptophan-derived metabolites, bile acids, glycolytic metabolites and scyllo-inositol. We show that inulin also reduces inflammatory gene expression in the hippocampus. This knowledge can be utilized to design early precision nutrition intervention strategies that use a prebiotic diet to enhance systemic metabolism and may be useful for reducing AD risk in asymptomatic APOE4 carriers.
Project description:The active form of vitamin D [1,25-dihydroxycholecalciferol, 1,25(OH)2D3] and the vitamin D receptor (VDR) regulate susceptibility to experimental colitis. The effect of the bacterial microflora on the susceptibility of C57BL/6 mice to dextran sodium sulfate-induced colitis was determined. Mice that cannot produce 1,25(OH)2D3 [Cyp27b1 (Cyp) knockout (KO)], VDR KO as well as their wild-type littermates were used. Cyp KO and VDR KO mice had more bacteria from the Bacteroidetes and Proteobacteria phyla and fewer bacteria from the Firmicutes and Deferribacteres phyla in the feces compared with wild-type. In particular, there were more beneficial bacteria, including the Lactobacillaceae and Lachnospiraceae families, in feces from Cyp KO and VDR KO mice than in feces from wild-type. Helicobacteraceae family member numbers were elevated in Cyp KO compared with wild-type mice. Depletion of the gut bacterial flora using antibiotics protected mice from colitis. 1,25(OH)2D3 treatment (1.25 ?g/100 g diet) of Cyp KO mice decreased colitis severity and reduced the numbers of Helicobacteraceae in the feces compared with the numbers in the feces of untreated Cyp KO mice. The mechanisms by which the dysbiosis occurs in VDR KO and Cyp KO mice included lower expression of E-cadherin on gut epithelial and immune cells and fewer tolerogenic dendritic cells that resulted in more gut inflammation in VDR and Cyp KO mice compared with wild-type mice. Increased host inflammation has been shown to provide pathogens with substrates to out-compete more beneficial bacterial species. Our data demonstrate that vitamin D regulates the gut microbiome and that 1,25(OH)2D3 or VDR deficiency results in dysbiosis, leading to greater susceptibility to injury in the gut.
Project description:The intestinal tract is inhabited by a large and diverse community of microbes collectively referred to as the gut microbiota. While the gut microbiota provides important benefits to its host, especially in metabolism and immune development, disturbance of the microbiota-host relationship is associated with numerous chronic inflammatory diseases, including inflammatory bowel disease and the group of obesity-associated diseases collectively referred to as metabolic syndrome. A primary means by which the intestine is protected from its microbiota is via multi-layered mucus structures that cover the intestinal surface, thereby allowing the vast majority of gut bacteria to be kept at a safe distance from epithelial cells that line the intestine. Thus, agents that disrupt mucus-bacterial interactions might have the potential to promote diseases associated with gut inflammation. Consequently, it has been hypothesized that emulsifiers, detergent-like molecules that are a ubiquitous component of processed foods and that can increase bacterial translocation across epithelia in vitro, might be promoting the increase in inflammatory bowel disease observed since the mid-twentieth century. Here we report that, in mice, relatively low concentrations of two commonly used emulsifiers, namely carboxymethylcellulose and polysorbate-80, induced low-grade inflammation and obesity/metabolic syndrome in wild-type hosts and promoted robust colitis in mice predisposed to this disorder. Emulsifier-induced metabolic syndrome was associated with microbiota encroachment, altered species composition and increased pro-inflammatory potential. Use of germ-free mice and faecal transplants indicated that such changes in microbiota were necessary and sufficient for both low-grade inflammation and metabolic syndrome. These results support the emerging concept that perturbed host-microbiota interactions resulting in low-grade inflammation can promote adiposity and its associated metabolic effects. Moreover, they suggest that the broad use of emulsifying agents might be contributing to an increased societal incidence of obesity/metabolic syndrome and other chronic inflammatory diseases.