Project description:The development of effective therapies inhibiting prostate cancer progression and metastasis may substantially impact prostate cancer mortality and potentially reduce the rates of invasive treatments by enhancing the safety of active surveillance strategies. Hepsin (HPN) is a cell surface serine protease amplified in a subset of human sarcomas (7.2%), as well as in ovarian (10%), lung adeno (5.4%), lung squamous cell (4.5%), adenoid cystic (5%), breast (2.6%), uterine (1.7%) and colon (1.4%) carcinomas. While HPN is not amplified in prostate cancer, it is one of the most prominently overexpressed genes in the majority of human prostate tumors and genetic experiments in mice indicate that Hepsin promotes prostate cancer metastasis, particularly metastasis to the bone marrow. We report here the development, analysis and animal trial of the small-molecule Hepsin inhibitor HepIn-13. Long-term exposure to HepIn-13 inhibited bone, liver and lung metastasis in a murine model of metastatic prostate cancer. These findings indicate that inhibition of Hepsin with small-molecule compounds could provide an effective tool for attenuation of prostate cancer progression and metastasis.
Project description:Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC(4)ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells.
Project description:IntroductionCytotoxic agents have shown limited benefits in hepatocellular carcinoma (HCC), mediated in part by the lack of targeting. As cell-penetrating peptides (CPPs) are capable of delivering various biologically active molecules into cells, including protein, peptides, small chemo-drugs, and nucleic acid with or without targeting, we developed T22-PE24, a CXCR4-targeted self-assembling cytotoxic nanotoxin, to effectively induce HCC pyroptosis.MethodsT22 incorporating enhanced green fluorescent protein (EGFP) or PE24 was purified from DE3 bacterial cells and characterized using transmission electron microscopy, the Zetasizer Nano®, and SEC-HPLC. The internalization effect of T22-EGFP was detected by flow cytometry system (FCS) in CXCR4+/LM3(CXCR4-) HCC cells. The CCK8, lactate dehydrogenase (LDH) release, Western blot, and nude mice HCC models were used to estimate the cell viability of T22-PE24. The complete-immunity HCC tumor-bearing mice model was used to assess the immune response of T22-PE24.ResultsThe round shape under transmission electron microscopy, 49.4 nm hydrodynamic diameter, and -33.33 mV zeta potential indicated that T22-PE24 self-assembled into nanoparticles. T22 incorporating EGFP selectively internalized in CXCR4+ HCC cells and showed no accumulation in CXCR4-knockout HCC cells. The T22-PE24 nanotoxin induced HCC pyroptosis via the caspase-3/GSDME signaling pathway and suppressed tumor growth in the absence of histological alterations in normal organs. Using the complete-immunity HCC tumor-bearing mice model, we found that T22-PE24 nanotoxin effectively induces the global reprogramming of cell components of the immune tumor microenvironment, leading to enhanced antitumor effects compared to those observed in immunodeficient mice.ConclusionOur findings demonstrate the activation of the innate immune response in HCC by inducing pyroptosis with T22-PE24 nanotoxin treatment and support an implementation of this strategy for HCC treatment.
Project description:The major cause of morbidity in breast cancer is development of metastatic disease, for which few effective therapies exist. Because tumor cell dissemination is often an early event in breast cancer progression and can occur before diagnosis, new therapies need to focus on targeting established metastatic disease in secondary organs. We report an effective therapy based on targeting cell surface-localized glucose-regulated protein 78 (GRP78). GRP78 is expressed normally in the endoplasmic reticulum, but many tumors and disseminated tumor cells are subjected to environmental stresses and exhibit elevated levels of GRP78, some of which are localized at the plasma membrane.Here, we show that matched primary tumors and metastases from patients who died from advanced breast cancer also express high levels of GRP78. We used a peptidomimetic targeting strategy that uses a known GRP78-binding peptide fused to a proapoptotic moiety [designated bone metastasis targeting peptide 78 (BMTP78)] and show that it can selectively kill breast cancer cells that express surface-localized GRP78. Furthermore, in preclinical metastasis models, we show that administration of BMTP78 can inhibit primary tumor growth as well as prolong overall survival by reducing the extent of outgrowth of established lung and bone micrometastases.The data presented here provide strong evidence that it is possible to induce cell death in established micrometastases by peptide-mediated targeting of cell surface-localized GRP in advanced breast cancers. The significance to patients with advanced breast cancer of a therapy that can reduce established metastatic disease should not be underestimated.
Project description:The treatment for metastatic castration-resistant prostate cancer patients remains a great challenge in the clinic and continuously demands discoveries of new targets and therapies. Here, we assess the function and therapeutic value of SIRT6 in metastatic castration-resistant prostate cancer. Methods: The expression of SIRT6 was examined in prostate cancer tissue microarray by immunohistochemistry staining. The functions of SIRT6 and underlying mechanisms were elucidated by in vitro and in vivo experiments. We also developed an efficient method to silence SIRT6 by aptamer-modified exosomes carrying small interfering RNA and tested the therapeutic effect in the xenograft mice models. Results: SIRT6 expression is positively correlated with prostate cancer progression. Loss of SIRT6 significantly suppressed proliferation and metastasis of prostate cancer cell lines both in vitro and in vivo. SIRT6-driven prostate cancer displays activation of multiple cancer-related signaling pathways, especially the Notch pathway. Silencing SIRT6 by siRNA delivered through engineered exosomes inhibited tumor growth and metastasis. Conclusions: SIRT6 is identified as a driver and therapeutic target for metastatic prostate cancer in our findings, and inhibition of SIRT6 by engineered exosomes can serve as a promising therapeutic tool for clinical application.
Project description:Advanced endometrial cancer (EC) lacks therapy, thus, there is a need for novel treatment targets. CXCR4 overexpression is associated with a poor prognosis in several cancers, whereas its inhibition prevents metastases. We assessed CXCR4 expression in EC in women by using IHC. Orthotopic models were generated with transendometrial implantation of CXCR4-transduced EC cells. After in vitro evaluation of the CXCR4-targeted T22-GFP-H6 nanocarrier, subcutaneous EC models were used to study its uptake in tumor and normal organs. Of the women, 91% overexpressed CXCR4, making them candidates for CXCR4-targeted therapies. Thus, we developed CXCR4+ EC mouse models to improve metastagenesis compared to current models and to use them to develop novel CXCR4-targeted therapies for unresponsive EC. It showed enhanced dissemination, especially in the lungs and liver, and displayed 100% metastasis penetrance at all clinically relevant sites with anti-hVimentin IHC, improving detection sensitivity. Regarding the CXCR4-targeted nanocarrier, 60% accumulated in the SC tumor; therefore, selectively targeting CXCR4+ cancer cells, without toxicity in non-tumor organs. Our CXCR4+ EC models will allow testing of novel CXCR4-targeted drugs and development of nanomedicines derived from T22-GFP-H6 to deliver drugs to CXCR4+ cells in advanced EC. This novel approach provides a therapeutic option for women with metastatic, high risk or recurrent EC that have a dismal prognosis and lack effective therapies.
Project description:Patients presenting with metastatic hepatoblastoma have limited treatment options and survival rates as low as 25%. We previously demonstrated that Proviral Integration site in Maloney murine leukemia virus 3 (PIM3) kinase promotes tumorigenesis and cancer cell stemness in hepatoblastoma. In this study, we assessed the role of PIM3 kinase in promoting hepatoblastoma metastasis. We utilized a tail vein injection model of metastasis to evaluate the effect of CRISPR/Cas9-mediated PIM3 knockout, stable overexpression of PIM3, and pharmacologic PIM inhibition on the formation of lung metastasis. In vivo studies revealed PIM3 knockout impaired the formation of lung metastasis: 5 out of 6 mice injected with wild type hepatoblastoma cells developed lung metastasis while none of the 7 mice injected with PIM3 knockout hepatoblastoma cells developed lung metastasis. PIM3 overexpression in hepatoblastoma increased the pulmonary metastatic burden in mice and mechanistically, upregulated the phosphorylation and cell surface expression of CXCR4, a key receptor in the progression of cancer cell metastasis. CXCR4 blockade with AMD3100 decreased the metastatic phenotype of PIM3 overexpressing cells, indicating that CXCR4 contributed to PIM3's promotion of hepatoblastoma metastasis. Clinically, PIM3 expression correlated positively with CXCR4 expression in primary hepatoblastoma tissues. In conclusion, we have shown PIM3 kinase promotes the metastatic phenotype of hepatoblastoma cells through upregulation of CXCR4 cell surface expression and these findings suggest that targeting PIM3 kinase may provide a novel therapeutic strategy for metastatic hepatoblastoma.
Project description:Esophageal cancer is one of the most common malignant tumors of the digestive tract. The greatest obstacle to the curing of esophageal cancer is its propensity to spread and metastasize. Esophageal cancer stem cells are considered the source for recurrence and metastasis of the tumors. While clinical evidence suggested that continuous up-regulation of CXCL12/CXCR4 was significantly associated with poor prognosis in patients with esophageal cancer, but the role and mechanism of CXCL12/CXCR4 in the invasion and metastasis of esophageal cancer has not been reported by far. This study found that esophageal cancer stem cells not only autocrine a great amount of CXCL12, but also high expression of its corresponding receptor CXCR4. Most importantly, the ability of esophageal cancer stem cells to spread and metastasize could be inhibited by blockage of CXCR4 with inhibitors or shRNA approaches both in vivo and in vitro studies. The important role of CXCL12 in the invasion and metastasis of esophageal cancer stem cells was also confirmed by loss-of-function and gain-of-function strategies. Mechanistically, we demonstrated that CXCL12/CXCR4 activated the ERK1/2 pathway and thereby ultimately maintained the characteristics of high-level invasion and metastasis of esophageal cancer stem cells. Taken together, our findings suggested that autocrine CXCL12/CXCR4 was one of the major mechanisms underlying the metastatic property of esophageal cancer stem cells through ERK1/2 signaling pathway, and might serve as a therapeutic target for esophageal cancer patients.
Project description:Autotaxin (ATX) promotes cancer cell metastasis through the production of lysophosphatidic acid (LPA). ATX binds to αvβ3 integrins controlling metastasis of breast cancer cells. We screened a series of cancer cell lines derived from diverse human and mouse solid tumors for the capacity of binding to ATX and found only a modest correlation with their level of αvβ3 integrin expression. These results strongly suggested the existence of another cell surface ATX-interacting factor. Indeed, ATXα has been shown to bind heparan-sulfate chains because of its unique polybasic insertion sequence, although the biological significance is unknown. We demonstrated here, that among all cell surface heparan-sulfate proteoglycans, syndecan-4 (SDC4) was essential for cancer cell interaction with ATXβ but was restrained by heparan-sulfate chains. In addition, exogenous ATXβ-induced MG63 osteosarcoma cell proliferation required physical interaction of ATXβ with the cell surface via an SDC4-dependent mechanism. In a preclininal mouse model, targeting SDC4 on 4T1 mouse breast cancer cells inhibited early bone metastasis formation. Furthermore, SDC4-prometastatic activity was totally abolished in absence of ATX expression. In conclusion our results determined that ATX and SDC4 are engaged in a reciprocal collaboration for cancer cell metastasis providing the rational for the development of novel anti-metastasis therapies.
Project description:Gastric cancer (GC) exhibits a poor prognosis due to extensive invasion and lymphatic metastasis in the advanced stage. In this study, we firstly found that the expression of miR-204-5p markedly decreased in GC patients' tissue and serum, especially in GC with lymphatic metastasis. And ROC analysis showed miR-204-5p also served as a predicted factor for the lymphatic metastasis of GC. CXCL12 and CXCR4 were predicted and confirmed as the functional targets of miR-204-5p by Targetscan analysis, dual luciferase assay and western blotting analysis. In addition, we further determined that miR-204-5p suppresses migration and invasion in GC. This finding elucidates new functions and mechanisms for miR-204-5p in GC development and provides a new potential diagnostic marker and therapeutic targets for GC.