Project description:Human bocavirus (HBoV) was recently discovered in children with respiratory distress and/or diarrhea. To our knowledge, no previous study has reported the existence of bocavirus in Saudi Arabia. Swabs samples from 80 children with respiratory tract infections were examined for the presence of HBoV. Real-time polymerase chain reaction was used as a sensitive method to detect the HBoV. Direct gene sequencing was used to determine the genotype of the detected virus isolates. HBoV was detected in 22.5% of the examined patients. The NP1 partial gene sequence from all patients showed that the circulated strains were related to HBoV-1 genotype. Most of HBoV infected patients showed evidence of mixed coinfection with other viral pathogens. The current study clearly demonstrated that genetically conserved HBoV1 circulates in Saudi Arabia. Interestingly, most of the HBoV1 infected cases were associated with high rates of co-infections with other viruses.
Project description:We investigated an outbreak of Middle East respiratory syndrome (MERS) at King Fahad Medical City (KFMC), Riyadh, Saudi Arabia, during March 29-May 21, 2014. This outbreak involved 45 patients: 8 infected outside KFMC, 13 long-term patients at KFMC, 23 health care workers, and 1 who had an indeterminate source of infection. Sequences of full-length MERS coronavirus (MERS-CoV) from 10 patients and a partial sequence of MERS-CoV from another patient, when compared with other MERS-CoV sequences, demonstrated that this outbreak was part of a larger outbreak that affected multiple health care facilities in Riyadh and possibly arose from a single zoonotic transmission event that occurred in December 2013 (95% highest posterior density interval November 8, 2013-February 10, 2014). This finding suggested continued health care-associated transmission for 5 months. Molecular epidemiology documented multiple external introductions in a seemingly contiguous outbreak and helped support or refute transmission pathways suspected through epidemiologic investigation.
Project description:To assess the temporal dynamics of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in dromedary camels, specimens were collected at 1-2 month intervals from 2 independent groups of animals during April 2013-May 2014 in Al-Ahsa Province, Saudi Arabia, and tested for MERS-CoV RNA by reverse transcription PCR. Of 96 live camels, 28 (29.2%) nasal swab samples were positive; of 91 camel carcasses, 56 (61.5%) lung tissue samples were positive. Positive samples were more commonly found among young animals (<4 years of age) than adults (>4 years of age). The proportions of positive samples varied by month for both groups; detection peaked during November 2013 and January 2014 and declined in March and May 2014. These findings further our understanding of MERS-CoV infection in dromedary camels and may help inform intervention strategies to reduce zoonotic infections.
Project description:A quantitative PCR method was established to quantify human bocavirus (HBoV) genomic copies in clinical specimens from children with lower respiratory tract infections (LRTI) in China. A total of 257 respiratory tract specimens were tested, and 7 (2.7%) of these (all sputum samples) were positive, with genomic copies that ranged from 8.0 x 10(3) to 8.0 x 10(9) in the samples. The main clinical symptom of patients who were positive for HBoV DNA was a pneumonia-like syndrome represented by high fever and cough. Our results suggest that HBoV may be an important etiological agent of LRTI in children in China.
Project description:Human bocaviruses (HBoVs) are suggested to be etiologic agents of childhood respiratory and gastrointestinal infections. There are four main recognized genotypes of HBoVs (HBoV1-4); the HBoV-1 genotype is considered to be the primary etiologic agent in respiratory infections, whereas the HBoV2-4 genotypes have been mainly associated with gastrointestinal infections. The aim of the present study was to determine the distribution of HBoV genotypes in children with respiratory or gastrointestinal infections in a hospital in Korea. A total of 662 nasopharyngeal swabs (NPSs) and 155 fecal specimens were collected from children aged 5 years or less. Polymerase chain reaction (PCR) was conducted to detect the NS1 HBoV gene. The VP1 gene of HBoV was further amplified in samples that were positive for the NS1 gene. The PCR products of VP1 gene amplification were genotyped by sequence analysis. HBoV was detected in 69 (14.5%) of 662 NPSs and in 10 (6.5%) of 155 fecal specimens. Thirty-three isolates from NPSs and five isolates from fecal specimens were genotyped, and all 38 sequenced isolates were identified as the HBoV-1 genotype. HBoV-1 is the most prevalent genotype in children with respiratory or gastrointestinal HBoV infections in a hospital in Korea.
Project description:Acute lower respiratory tract infection is a major health problem that affects more than 15% of the total population of Saudi Arabia each year. Epidemiological studies conducted over the last three decades have indicated that viruses are responsible for the majority of these infections. The epidemiology of respiratory viruses in Saudi Arabia is proposed to be affected mainly by the presence and mobility of large numbers of foreign workers and the gathering of millions of Muslims in Mecca during the Hajj and Umrah seasons. Knowledge concerning the epidemiology, circulation pattern, and evolutionary kinetics of respiratory viruses in Saudi Arabia are scant, with the available literature being inconsistent. This review summarizes the available data on the epidemiology and evolution of respiratory viruses. The demographic features associated with Middle East respiratory syndrome-related coronavirus infections are specifically analyzed for a better understanding of the epidemiology of this virus. The data support the view that continuous entry and exit of pilgrims and foreign workers with different ethnicities and socioeconomic backgrounds in Saudi Arabia is the most likely vehicle for global dissemination of respiratory viruses and for the emergence of new viruses (or virus variants) capable of greater dissemination.
Project description:Human bocavirus (HBoV) is an emerging virus and has been detected worldwide, especially in pediatric patients with respiratory and gastrointestinal infection. In this study, we describe HBoV prevalence, genotypes circulation and DNA shedding, in stool samples from children up to two years of age in Brazil. During 2016 and 2017, 886 acute gastroenteritis (AGE) stool samples from ten Brazilian states were analyzed by TaqMan®-based qPCR, to detect and quantify HBoV. Positive samples were genotyped by sequencing the VP1/2 overlap region, followed by phylogenetic analysis and co-infections were accessed by screening other gastroenteric viruses. HBoV was detected in 12.4% (n = 110) of samples, with viral load ranging from 1.6 × 102 to 1.2 × 109 genome copies per gram of stool. From these, co-infections were found in 79.1%, and a statistically lower HBoV viral load was found compared to viral loads of rotavirus, norovirus and adenovirus in double infected patients (p < 0.05). No significant differences were found between HBoV viral load in single or co-infections, age groups or genotypes. Phylogenetic analysis identified the circulation of HBoV-1 in 38%, HBoV-2 in 40% and HBoV-3 in 22%. Continuous HBoV monitoring is needed to clarify its role in diarrhea disease, especially in the absence of classic gastroenteric viruses.
Project description:Human bocavirus (HBoV), a newly cloned human virus of the genus Bocavirus, was detected by PCR from nasopharyngeal swab samples (8 of 318; 5.7%) collected from children with lower respiratory tract infections. HBoV may be one of the causative agents of lower respiratory tract infections in young children.
Project description:BackgroundHuman bocavirus 1 (HBoV1) is frequently codetected with other viruses, and detected in asymptomatic children. Thus, the burden of HBoV1 respiratory tract infections (RTI) has been unknown. Using HBoV1-mRNA to indicate true HBoV1 RTI, we assessed the burden of HBoV1 in hospitalized children and the impact of viral codetections, compared with respiratory syncytial virus (RSV).MethodsOver 11 years, we enrolled 4879 children <16 years old admitted with RTI. Nasopharyngeal aspirates were analyzed with polymerase chain reaction for HBoV1-DNA, HBoV1-mRNA, and 19 other pathogens.ResultsHBoV1-mRNA was detected in 2.7% (130/4850) samples, modestly peaking in autumn and winter. Forty-three percent with HBoV1 mRNA were 12-17 months old, and only 5% were <6 months old. A total of 73.8% had viral codetections. It was more likely to detect HBoV1-mRNA if HBoV1-DNA was detected alone (odds ratio [OR]: 3.9, 95% confidence interval [CI]: 1.7-8.9) or with 1 viral codetection (OR: 1.9, 95% CI: 1.1-3.3), compared to ≥2 codetections. Codetection of severe viruses like RSV had lower odds for HBoV1-mRNA (OR: 0.34, 95% CI: 0.19-0.61). The yearly lower RTI hospitalization rate per 1000 children <5 years was 0.7 for HBoV1-mRNA and 8.7 for RSV.ConclusionsTrue HBoV1 RTI is most likely when HBoV1-DNA is detected alone, or with 1 codetected virus. Hospitalization due to HBoV1 LRTI is 10-12 times less common than RSV.