Project description:In intensive fruit growing systems, the recovery and maintenance of soil fertility play a crucial role in both environmental protection and sustainable support to plant productivity. The circular economy approach adopted at the EU level strongly promotes the use of organic products instead of mineral fertilizers. This work focuses on two different soil improvers, compost from the organic fraction of municipal solid waste digestate (CO) and “matured” manure, produced after a fast and controlled aerobic treatment in an aerated pile (MM), which were applied in three apple orchards with different soil tillage. The soil improvers have been characterized for amendment and fertilizing properties. After the amendment, the soils were sampled twice a year (Spring and Autumn) for three years. Each sample has been characterized for texture, pH, cation exchange capacity, nutrients, soil organic matter, and micronutrients. The amendments obtained differed on C, N, P, and K contents, but had similar biological stability. The main effects on soils were the increasing of N and soil organic matter after compost application, while the use of matured manure mainly act on available P and exchangeable K. The treatments showed significant effects among fields with a linear increasing trend only for compost. Matured manure showed more effects in earlier times. The data collected aim to improve the knowledge about sustainable management of soil organic matter and organic nutrients in intensive fruit-growing agriculture by using local products.
Project description:Global pork production has an annual growth of approximately 2.1%, and its economic and environmental impact are related with the treatment of waste in the production chain. There is little evidence of research advances to generate alternatives for using these wastes. The lack of research related to microalgae cultivation using digestate produced by porcine residues generates negative environmental impact, inadequate and inefficient technologies, low recovery and use of waste and loss of value and competitiveness in the market. The available literature focuses mainly on the treatment of anaerobic digestion liquid effluents for the removal of components, but not on the generation of value-added products. Therefore, there is a need to collect the available information, analyze it and propose other new methodologies. This article presents the information obtained from conducting a systematic review of the literature with a bibliometric and a comparative analysis; achieving an analysis of the temporal and geographical distribution, the main topics, the most influential players, the degree of maturity of the research and different strategies collected for microalgae-based swine manure digestate treatment. In this way, it was possible to capture an overview of the current state of the development of research focused on the use of digestate for the cultivation of microalgae, visualizing important aspects as the evolution of publications, identifying China and USA as the main players in research, biomass and wastewater as potential topics also Spirulina, Astaxanthin and beta-carotene as the main products based on microalgae. Thus, achieving an structure, organized and synthesized landscape of scientific and technological knowledge available for the proposal of investigations that allow the use of anaerobic digestion liquid effluents as cultivation medium for microalgae.
Project description:Pectin recovered from mango peel biomass can be used as a potential source for pectic oligosaccharide hydrolysate with excellent probiotic growth-enhancing performance and prebiotic potentials. Consequently, the objectives of the current study were to optimise the enzyme hydrolysis treatment of mango peel pectin (MPP) and to evaluate the pectic oligosaccharide effects of Lactobacillus reuteri DSM 17938 and Bifidobacterium animalis TISTR 2195. Mango of "chok anan" variety was chosen due to its excessive volume of biomass in processing and high pectin content. The optimal treatment for mango peel pectic oligosaccharide (MPOS) valorisation was 24 h of fermentation with 0.3% (v/v) pectinase. This condition provided small oligosaccharides with the molecular weight of 643 Da that demonstrated the highest score of prebiotic activity for both of B. animalis TISTR 2195 (7.76) and L. reuteri DSM 17938 (6.87). The major sugar compositions of the oligosaccharide were fructose (24.41% (w/w)) and glucose (19.52% (w/w)). For the simulation of prebiotic fermentation, B. animalis TISTR 2195 showed higher proliferation in 4% (w/v) of MPOS supplemented (8.92 log CFU/mL) than that of L. reuteri (8.53 CFU/mL) at 72 h of the fermentation time. The main short chain fatty acids (SCFAs) derived from MPOS were acetic acid and propionic acid. The highest value of total SCFA was achieved from the 4% (w/v) MPOS supplementation for both of B. animalis (68.57 mM) and L. reuteri (69.15 mM). The result of this study therefore conclusively advises that MPOS is a novel pectic oligosaccharide resource providing the opportunity for the sustainable development approach through utilising by-products from the fruit industry.
Project description:Understanding the environmental pathways of Cryptosporidium is essential for effective management of human and animal cryptosporidiosis. In this paper we aim to quantify livestock Cryptosporidium spp. loads to land on a global scale using spatially explicit process-based modeling, and to explore the effect of manure storage and treatment on oocyst loads using scenario analysis. Our model GloWPa-Crypto L1 calculates a total global Cryptosporidium spp. load from livestock manure of 3.2 × 1023 oocysts per year. Cattle, especially calves, are the largest contributors, followed by chickens and pigs. Spatial differences are linked to animal spatial distributions. North America, Europe, and Oceania together account for nearly a quarter of the total oocyst load, meaning that the developing world accounts for the largest share. GloWPa-Crypto L1 is most sensitive to oocyst excretion rates, due to large variation reported in literature. We compared the current situation to four alternative management scenarios. We find that although manure storage halves oocyst loads, manure treatment, especially of cattle manure and particularly at elevated temperatures, has a larger load reduction potential than manure storage (up to 4.6 log units). Regions with high reduction potential include India, Bangladesh, western Europe, China, several countries in Africa, and New Zealand.
Project description:Manure and digestate liquid fractions are nutrient-rich effluents that can be fractionated and concentrated using membranes. However, these membranes tend to foul due to organic matter, solids, colloids, and inorganic compounds including calcium, ammonium, sodium, sulfur, potassium, phosphorus, and magnesium contained in the feed. This review paper is intended as a theoretical and practical tool for the decision-making process during design of membrane-based systems aiming at processing manure liquid fractions. Firstly, this review paper gives an overview of the main physico-chemical characteristics of manure and digestates. Furthermore, solid-liquid separation technologies are described and the complexity of the physico-chemical variables affecting the separation process is discussed. The main factors influencing membrane fouling mechanisms, morphology and characteristics are described, as well as techniques covering membrane inspection and foulant analysis. Secondly, the effects of the feed characteristics, membrane operating conditions (pressure, cross-flow velocity, temperature), pH, flocculation-coagulation and membrane cleaning on fouling and membrane performance are presented. Finally, a summary of techniques for specific recovery of ammonia-nitrogen, phosphorus and removal of heavy metals for farm effluents is also presented.
Project description:The increase in energy and fertilizer consumption makes it necessary to develop sustainable alternatives for agriculture. Anaerobic digestion and digestates appeared to be suitable options. However, untreated digestates still have high water content and can increase greenhouse gas emissions during storage and land application. In this study, manure-derived digestate and solid fraction of digestate after separation were treated with a novel solar drying technology to reduce their water content, combined with acidification to reduce the gaseous emissions. The acidified digestate and acidified solid fraction of digestate recovered more nitrogen and ammonia nitrogen than their respective non-acidified products (1.5-1.3 times for TN; 14 times for TAN). Ammonia and methane emissions were reduced up to 94% and 72% respectively, compared to the non-acidified ones, while N2O increased more than 3 times. Dried digestate and dried acidified digestate can be labeled as NPK organic fertilizer regarding the European regulation, and the dried solid fraction and the improved dried acidified solid fraction can be labeled as N or P organic fertilizer. Moreover, plant tests showed that N concentrations in fresh lettuce leaves were within the EU limit with all products in all the cases. However, zinc concentration appeared to be a limitation in some of the products as their concentration exceeded the European legal limits.
Project description:Spreading of manure on agricultural soils is a main source of ammonia emissions and/or nitrate leaching. It has been addressed by the European Union with the Directives 2001/81/EC and 91/676/EEC to protect the environment and the human health. The disposal of manure has therefore become an economic and environmental challenge for farmers. Thus, the conversion of manure via anaerobic digestion in a biogas plant could be a sustainable solution, having the byproducts (solid and liquid digestates) the potential to be used as fertilizers for crops. This work aimed at characterizing and assessing the effect of digestates obtained from a local biogas plant (Biogas Wipptal, Gmbh), either in the form of liquid fraction or as a solid pellet on: (i) the fertility of the soils during an incubation experiment; (ii) the plant growth and nutritional status of different species (maize and cucumber). Moreover, an extensive characterization of the pellet was performed via X-ray microanalytical techniques. The data obtained showed that both digestates exhibit a fertilizing potential for crops, depending on the plant species and the fertilizer dose: the liquid fraction increases the shoot fresh weight at low dose in cucumber, conversely, the solid pellet increases the shoot fresh weight at high dose in maize. The liquid digestate may have the advantage to release nutrients (i.e. nitrogen) more rapidly to plants, but its storage represents the main constraint (i.e. ammonia volatilization). Indeed, pelleting the digestates could improve the storability of the fertilizer besides enhancing plant nutrient availability (i.e. phosphate and potassium), plant biomass and soil biochemical quality (i.e. microbial biomass and activity). The physical structure and chemical composition of pellet digestates allow nutrients to be easily mobilized over time, representing a possible source of mineral nutrients also in long-term applications.