Project description:BackgroundIntrahepatic cholangiocarcinoma (ICC) is a highly metastatic cancer. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) enables sensitive tumor and metastasis detection. Our aim is to evaluate the influence of pre-treatment PET/CT on the N- and M-staging and subsequent clinical management in ICC patients.MethodsBetween August 2010 and August 2018, 660 consecutive ICC patients, without prior anti-tumor treatments nor other malignancies, were enrolled. The diagnostic performance of PET/CT on the N- and M-staging was compared with conventional imaging, and the preoperative staging accuracy and treatment re-allocation by PET/CT were retrospectively calculated. Survival difference was compared between patients receiving PET/CT or not after propensity score matching.ResultsPatients were divided into group A (n=291) and group B (n=369) according to whether PET/CT was performed. Among 291 patients with both PET/CT and conventional imaging for staging in group A, PET/CT showed significantly higher sensitivity (83.0% vs. 70.5%, P=0.001), specificity (88.3% vs. 74.9%, P<0.001) and accuracy (86.3% vs. 73.2%, P<0.001) than conventional imaging in diagnosing regional lymph node metastasis, as well as higher sensitivity (87.8% vs. 67.6%, P<0.001) and accuracy (93.5% vs. 89.3%, P=0.023) in diagnosing distant metastasis. Overall, PET/CT improved the accuracy of preoperative staging from 60.1% to 71.8% (P<0.001), and modified clinical treatment strategy in 5.8% (17/291) of ICC patients, with unique roles in different tumor-node-metastasis (TNM) stages. High tumor-to-non-tumor ratio (TNR) predicted poor overall survival [hazard ratio (HR) = 2.17; 95% confidence interval (CI): 1.49-3.15; P<0.001]. Furthermore, patients performing PET/CT had longer overall survival compared with those without PET/CT (HR =0.74; 95% CI: 0.58-0.93; P=0.011) after propensity score matching.ConclusionsPET/CT was valuable for diagnosing regional lymph node metastasis and distant metastasis in ICC patients, and facilitated accurate tumor staging and optimal treatment allocation.
Project description:Primary mediastinal germ cell tumor (MGCT) is an uncommon tumor. Although it has histology similar to that of gonadal germ cell tumor (GCT), the prognosis for MGCT is generally worse than that for gonadal GCT. We performed visual assessment and quantitative analysis of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) for MGCTs. A total of 35 MGCT patients (age = 33.1 ± 16.8 years, F:M = 16:19) who underwent preoperative PET/CT were retrospectively reviewed. The pathologic diagnosis of MGCTs identified 24 mature teratomas, 4 seminomas, 5 yolk sac tumors, and 2 mixed germ cell tumors. Visual assessment was performed by categorizing the uptake intensity, distribution, and contour of primary MGCTs. Quantitative parameters including the maximum standardized uptake value (SUVmax), tumor-to-background ratio (TBR), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and maximum diameter were compared between benign and malignant MGCTs. On visual assessment, the uptake intensity was the only significant parameter for differentiating between benign and malignant MGCTs (p = 0.040). In quantitative analysis, the SUVmax (p < 0.001), TBR (p < 0.001), MTV (p = 0.033), and TLG (p < 0.001) showed significantly higher values for malignant MGCTs compared with benign MGCTs. In receiver operating characteristic (ROC) curve analysis of these quantitative parameters, the SUVmax had the highest area under the curve (AUC) (AUC = 0.947, p < 0.001). Furthermore, the SUVmax could differentiate between seminomas and nonseminomatous germ cell tumors (p = 0.042) and reflect serum alpha fetoprotein (AFP) levels (p = 0.012). The visual uptake intensity and SUVmax on [18F]FDG PET/CT showed discriminative ability for benign and malignant MGCTs. Moreover, the SUVmax may associate with AFP levels.
Project description:BackgroundSometimes the diagnosis of recurrent cancer in patients with a previous malignancy can be challenging. This prospective cohort study assessed the clinical utility of (18)F-fluorodeoxyglucose positron-emission tomography-computed tomography ((18)F-FDG PET-CT) in the diagnosis of clinically suspected recurrence of cancer.MethodsPatients were eligible if cancer recurrence (non-small-cell lung (NSCL), breast, head and neck, ovarian, oesophageal, Hodgkin's or non-Hodgkin's lymphoma) was suspected clinically, and if conventional imaging was non-diagnostic. Clinicians were asked to indicate their management plan before and after (18)F-FDG PET-CT scanning. The primary outcome was change in planned management after (18)F-FDG PET-CT.ResultsBetween April 2009 and June 2011, 101 patients (age, median 65 years; 55% female) were enroled from four cancer centres in Ontario, Canada. Distribution by primary tumour type was: NSCL (55%), breast (19%), ovarian (10%), oesophageal (6%), lymphoma (6%), and head and neck (4%). Of the 99 subjects who underwent (18)F-FDG PET-CT, planned management changed after (18)F-FDG PET-CT in 52 subjects (53%, 95% confidence interval (CI), 42-63%); a major change in plan from no treatment to treatment was observed in 38 subjects (38%, 95% CI, 29-49%), and was typically associated with (18)F-FDG PET-CT findings that were positive for recurrent cancer (37 subjects). After 3 months, the stated post-(18)F-FDG PET-CT management plan was actually completed in 88 subjects (89%, 95% CI, 81-94%).ConclusionIn patients with suspected cancer recurrence and conventional imaging that is non-diagnostic, (18)F-FDG PET-CT often provides new information that leads to important changes in patient management.
Project description:Ongoing technologic and therapeutic advancements in medicine are now testing the limits of conventional anatomic imaging techniques. The ability to image physiology, rather than simply anatomy, is critical in the management of multiple disease processes, especially in oncology. Nuclear medicine has assumed a leading role in detecting, diagnosing, staging and assessing treatment response of various pathologic entities, and appears well positioned to do so into the future. When combined with computed tomography (CT) or magnetic resonance imaging (MRI), positron emission tomography (PET) has become the sine quo non technique of evaluating most solid tumors especially in the thorax. PET/CT serves as a key imaging modality in the initial evaluation of pulmonary nodules, often obviating the need for more invasive testing. PET/CT is essential to staging and restaging in bronchogenic carcinoma and offers key physiologic information with regard to treatment response. A more recent development, PET/MRI, shows promise in several specific lung cancer applications as well. Additional recent advancements in the field have allowed PET to expand beyond imaging with 18F-flurodeoxyglucose (FDG) alone, now with the ability to specifically image certain types of cell surface receptors. In the thorax this predominantly includes 68Ga-DOTATATE which targets the somatostatin receptors abundantly expressed in neuroendocrine tumors, including bronchial carcinoid. This receptor targeted imaging technique permits targeting these tumors with therapeutic analogues such as 177Lu labeled DOTATATE. Overall, the proper utilization of PET in the thorax has the ability to directly impact and improve patient care.
Project description:BackgroundIntrahepatic cholangiocarcinoma (IHCC) is highly aggressive primary hepatic malignancy with an increasing incidence.ObjectiveThis study aimed to develop machine learning-based radiomic clustering using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for predicting recurrence-free survival (RFS) and overall survival (OS) in IHCC.MethodsWe retrospectively reviewed pretreatment F-18 FDG PET/CT scans of 60 IHCC patients who underwent surgery without neoadjuvant treatment between January 2008 and July 2020. Radiomic features such as first order, shape, and gray level were extracted from the scans of 52 patients and analyzed using unsupervised hierarchical clustering.ResultsOf the 60 patients, 36 experienced recurrence and 31 died during follow-up. Eight patients with a negative FDG uptake were classified as Group 0. The unsupervised hierarchical clustering analysis divided the total cohort into three clusters (Group 1: n = 27; Group 2: n = 23; Group 3: n = 2). The Kaplan-Meier curves showed significant differences in RFS and OS among the clusters (p < 0.0001). Multivariate analyses showed that the PET radiomics grouping was an independent prognostic factor for RFS (hazard ratio (HR) = 3.03, p = 0.001) and OS (HR = 2.39, p = 0.030). Oxidative phosphorylation was significantly activated in Group 1, and the KRAS, P53, and WNT β-catenin pathways were enriched in Group 2.ConclusionsThis study demonstrated that machine learning-based PET radiomics clustering can preoperatively predict prognosis and provide valuable information complementing the genomic profiling of IHCC.
Project description:BackgroundTo determine the normal perivalvular 18F-Fluorodeoxyglucose (18F-FDG) uptake on positron emission tomography (PET) with computed tomography (CT) within one year after aortic prosthetic heart valve (PHV) implantation.MethodsPatients with uncomplicated aortic PHV implantation were prospectively included and underwent 18F-FDG PET/CT at either 5 (± 1) weeks (group 1), 12 (± 2) weeks (group 2) or 52 (± 8) weeks (group 3) after implantation. 18F-FDG uptake around the PHV was scored qualitatively (none/low/intermediate/high) and quantitatively by measuring the maximum Standardized Uptake Value (SUVmax) and target to background ratio (SUVratio).ResultsIn total, 37 patients (group 1: n = 12, group 2: n = 12, group 3: n = 13) (mean age 66 ± 8 years) were prospectively included. Perivalvular 18F-FDG uptake was low (8/12 (67%)) and intermediate (4/12 (33%)) in group 1, low (7/12 (58%)) and intermediate (5/12 (42%)) in group 2, and low (8/13 (62%)) and intermediate (5/13 (38%)) in group 3 (P = 0.91). SUVmax was 4.1 ± 0.7, 4.6 ± 0.9 and 3.8 ± 0.7 (mean ± SD, P = 0.08), and SUVratio was 2.0 [1.9 to 2.2], 2.0 [1.8 to 2.6], and 1.9 [1.7 to 2.0] (median [IQR], P = 0.81) for groups 1, 2, and 3, respectively.ConclusionNon-infected aortic PHV have similar low to intermediate perivalvular 18F-FDG uptake with similar SUVmax and SUVratio at 5, 12, and 52 weeks after implantation.
Project description:BackgroundTo investigate the current knowledge and attitudes towards [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) among non-radiologist medical staff in China.MethodsThis cross-sectional study was conducted between November 18, 2022, and December 6, 2022, at the First Affiliated Hospital (Southwest Hospital) of the Army Medical University (Third Military Medical University) among non-radiologist staff (medical, nursing, and others). The questionnaire survey (Cronbach's α = 0.887) included 28 items: 10 on demographics, 11 on knowledge (maximum score of 22), and seven on attitudes (maximum score of 35). The factors influencing knowledge and attitudes were identified using multivariable logistic regression analysis.ResultsThis study analyzed 631 valid questionnaires. The mean knowledge score was 7.16 ± 6.48 (32.55%), indicating poor knowledge. The mean attitude score was 22.859 ± 2.36 (65.29%), indicating positive attitudes. Nursing (OR = 0.301, 95%CI: 0.159-0.571), other occupations (OR = 0.426, 95%CI: 0.200-0.905), departments with high volumes of PET/CT prescriptions (OR = 0.419, 95%CI: 0.269-0.652), radioprotection training (OR = 2.520, 95%CI: 1.576-4.030), underwent (or a relative) a PET/CT (OR = 1.713, 95%CI: 1.063-2.761), and contact with 1-10 (OR = 2.429, 95%CI: 1.627-3.627) or > 10 (OR = 3.575, 95%CI: 1.762-7.252) patients per month were independently associated with higher knowledge scores. Only the knowledge scores (OR = 1.063, 95%CI: 1.032-1.094) were independently associated with higher attitude scores.ConclusionNon-radiologist medical staff members in China have poor knowledge but positive attitudes toward PET/CT. This study identified knowledge areas worth improving in future training interventions. Radioprotection training appears particularly useful in improving the knowledge of PET/CT, which should translate into more favorable attitudes.Trial registrationNot applicable.
Project description:IntroductionAlthough positron emission tomography/computed tomography (PET/CT) is a common tool for measuring breast cancer (BC), subtypes are not automatically classified by it. Therefore, the purpose of this research is to use an artificial neural network (ANN) to evaluate the clinical subtypes of BC based on the value of the tumor marker.Materials and methodsIn our nuclear medical facility, 122 BC patients (training and testing) had 18F-fluoro-D-glucose (18F-FDG) PET/CT to identify the various subtypes of the disease. 18F-FDG-18 injections were administered to the patients before the scanning process. We carried out the scan according to protocol. Based on the tumor marker value, the ANN's output layer uses the Softmax function with cross-entropy loss to detect different subtypes of BC.ResultsWith an accuracy of 95.77%, the result illustrates the ANN model for K-fold cross-validation. The mean values of specificity and sensitivity were 0.955 and 0.958, respectively. The area under the curve on average was 0.985.ConclusionSubtypes of BC may be categorized using the suggested approach. The PET/CT may be updated to diagnose BC subtypes using the appropriate tumor maker value when the suggested model is clinically implemented.
Project description:Objective: The objective of the study was to assess the advantages of 18F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography with magnetic resonance (PET/CT-MR) in diagnosing and monitoring patients with adult-onset Still's disease (AOSD). Methods: Participants in this retrospective case-control study underwent whole-body 18F-FDG-PET/CT-MR imaging. All PET scans were qualitatively and semiquantitatively analyzed using standardized uptake values (SUVs) normalized to liver uptake, i.e., we calculated the ratio (SUVr) between the minimum, maximum, and mean SUVs for different organs and tissues and the mean SUV for the liver. Disease activity scores were assessed using Pouchot's criteria. Results: Eighteen patients diagnosed with AOSD and 24 controls (non-AOSD patients diagnosed with solid tumors, excluding lymphomas) were considered. A total of 38 PET/MR and nine PET/CT scans were analyzed. AOSD patients had higher SUVr than controls. All SUVr differed significantly between the patient and control group for bone marrow, and for the spleen, the only difference lacking statistical significance concerned the ratio of the minimum SUV for spleen to the mean SUV for liver. Though limited in number, AOSD responders to therapy showed lower uptakes during the period monitored. No correlations were found between Pouchot's scores and SUVr. Conclusion: Our data revealed higher spleen and bone marrow 18F-FDG uptakes on PET/CT and PET/MR images in AOSD patients than in controls. Together with clinical examinations and laboratory data, PET/CT and PET/MR seemed more reliable than Pouchot's score in assessing disease activity.
Project description:BackgroundVarious inflammatory conditions may present with musculoskeletal symptoms similar to those of polymyalgia rheumatica (PMR). We investigated findings on 18F-fluorodexoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) images that may differentiate PMR from polymyalgia-like illnesses.MethodsWe analyzed data from 25 patients with new-onset polymyalgia-like illnesses who fulfilled Bird's diagnostic criteria for PMR and had undergone FDG-PET/CT scan. To assess the uptake by major joints and synovial bursae, particularly at PMR-specific sites (shoulder, sternoclavicular, and hip joints, interspinous bursae, ischial tuberosities, and greater trochanters), we used visual scoring system to score FDG uptake: 0, no uptake (same as bone); 1, slight uptake; 2, moderate uptake (same as the liver); 3, greater uptake than the liver; and 4, uptake as strong as in the cerebellum.ResultsThe final diagnoses were PMR in 17 patients and non-PMR in eight patients (three malignancies, two infections, one cholesterol crystal embolism, one ANCA-associated vasculitis, and one undefined diagnosis). Although the serum MMP-3 levels were significantly higher in patients with PMR, C-reactive protein and erythrocyte sedimentation rate mean values did not differ between the two groups. In PMR-specific sites, FDG accumulations were observed in all cases of PMR, with a high PET-positive score of 2.00 (range, 0-3), but it was low in non-PMR cases, with a PET-positive score of 1.00 (range, 0-3).ConclusionsThe FDG accumulation patterns in polymyalgia-like illness differ from those in PMR, despite the similar clinical presentations of both conditions. An FDG-PET/CT scan is useful for differentiating PMR from other polymyalgia-like illnesses.