Project description:In this report, the morpho-structural peculiarities and the crystallization mechanisms in solution-processed, solvent vapor annealed (SVA) thin films of rubrene (5,6,11,12-tetraphenylnaphthacene) on different substrates were investigated. The high-quality rubrene crystal films with a triclinic crystal structure were successfully prepared on the FTO substrates (glass slide coated with fluorine-tin-oxide) modified by PLA (polylactic acid) for the first time. The area coverage of rubrene crystal and the sizes of rubrene dendritic crystals increased with increasing thickness of PLA film and concentration of rubrene solution. For rubrene molecules, FTO wafers with rough surface provided the possibility of heterogeneous nucleation. During the SVA process, there were two kinds of forces acting on the diffusion of rubrene molecules: one force was provided by the residual chloroform solvent, which was perpendicular to the substrate, and the other force was provided by gaseous dichloromethane, which was parallel to the substrate. The synergy of these two forces was proposed to explain the nucleation and the crystallization processes of rubrene films. The higher nucleus of PLA/rubrene dendrites and the layer-by-layer stacking of needle-shaped nanocrystalline PLA/rubrene were important for exploring their kinetic formation process.
Project description:Ferroelectricity, a bistable ordering of electrical dipoles in a material, is widely used in sensors, actuators, nonlinear optics, and data storage. Traditional ferroelectrics are ceramic based. Ferroelectric polymers are inexpensive lead-free materials that offer unique features such as the freedom of design enabled by chemistry, the facile solution-based low-temperature processing, and mechanical flexibility. Among engineering polymers, odd nylons are ferroelectric. Since the discovery of ferroelectricity in polymers, nearly half a century ago, a solution-processed ferroelectric nylon thin film has not been demonstrated because of the strong tendency of nylon chains to form hydrogen bonds. We show the solution processing of transparent ferroelectric thin film capacitors of odd nylons. The demonstration of ferroelectricity, as well as the way to obtain thin films, makes odd nylons attractive for applications in flexible devices, soft robotics, biomedical devices, and electronic textiles.
Project description:With the fast development of organic electronics, organic semiconductors have been extensively studied for various optoelectronic applications, among which organic phototransistors recently emerged as one of the most promising light signal detectors. However, it is still a big challenge to endow organic phototransistors with both high mobility and high light-sensitivity because the low mobility of most organic photoresponsive materials limits the efficiency of transporting and collecting charge carriers. We herein report band-like charge transport in vacuum-deposited small-molecule thin films for organic phototransistor arrays which can be operated at very low dark currents (~10-12 A). Both high mobility and excellent optical figures of merit including photosensitivity, photoresponsivity and detectivity are achieved, wherein, unprecedentedly, a detectivity greater than 1017 cm Hz1/2 W-1 is obtained. All these key parameters are superior to state-of-the-art organic phototransistors, implying a great potential in optoelectronic applications.
Project description:We present a statistical analysis of femtosecond transient absorption microscopy applied to four different organic semiconductor thin films based on perylene-diimide (PDI). By achieving a temporal resolution of 12 fs with simultaneous sub-10 nm spatial precision, we directly probe the underlying exciton transport characteristics within 3 ps after photoexcitation free of model assumptions. Our study reveals sub-picosecond coherent exciton transport (12-45 cm2 s-1) followed by a diffusive phase of exciton transport (3-17 cm2 s-1). A comparison between the different films suggests that the exciton transport in the studied materials is intricately linked to their nanoscale morphology, with PDI films that form large crystalline domains exhibiting the largest diffusion coefficients and transport lengths. Our study demonstrates the advantages of directly studying ultrafast transport properties at the nanometer length scale and highlights the need to examine nanoscale morphology when investigating exciton transport in organic as well as inorganic semiconductors.
Project description:In this study, we report on the synthesis and device studies of a series of new copolymers containing N-substituted perylene dimide and dioctylfluorene units as part of the main backbone. A facile synthetic approach avoiding non-selective bromination was used to synthesize the monomer M1 by the reaction of perylene-3,4,9,10-tetracarboxylic dianhydride with 2-amino-7-bromo-9,9-dioctylfluorene. The copolymers P1 and P2 were synthesized by Suzuki polycondensation of M1 with 2,2'-(9,9-dioctyl-9H-fluoren-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) M2 and 9-(heptadecan-9-yl)-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole M3, respectively. The copolymer P3 was synthesized by direct arylation polymerization of M1 with 4,7-bis(4-octylthiophen-2-yl)benzo[c]-1,2,5-thiadiazole M4. All the copolymers showed thermal stability greater than 380 °C as evidenced from thermogravimetric analysis. The copolymers exhibited a narrow optical band gap (1.80-2.08 eV) with their UV-visible absorption spectra extending up to the NIR region and they are found to be suitable for use in OSC applications. The molecular weights of the polymers P1-P3 were found to be in the range of 10.68 to 16.02 kg mol-1 as measured from GPC analysis. The surface morphology of the active layers based on P1/P2/P3:P3HT blend films was investigated by AFM and the rms values from height images range from 0.65 to 2.90 nm. The polymers were blended with P3HT to fabricate BHJ solar cells in three different weight ratios i.e. 1 : 1, 1.5 : 1 and 2 : 1 and the best power conversion efficiency was observed for the binary film of P3:P3HT blend device in a 1 : 1 weight ratio which reached up to 1.96% with a V oc of 0.55 V, J sc of 10.12 mA cm-2 and FF of 34.63% which is among the highest reported for BHJ solar cells with N-substituted PDI based acceptors.
Project description:Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.
Project description:Perylene-3,4,9,10-tetracarboxylic acid diimides (PDIs) have recently gained considerable interest for water-based biosensing applications. PDIs have been studied intensively in the bulk state, but their physical properties in aqueous solution in interplay with side-chain polarity are, however, poorly understood. Therefore, three perylene diimide based derivatives were synthesized to study the relationship between side-chain polarity and their self-assembly characteristics in water. The polarity of the side chains was found to dictate the size and morphology of the formed aggregates. Side-chain polarity rendered the self-assembly and photophysical properties of the PDIs-both important for imminent water-based applications-and these were revealed to be especially responsive to changes in solvent composition.
Project description:The electron transport layer (ETL) is very crucial for enhancing the device performance of polymer solar cells (PSCs). Meanwhile, thickness-insensitive and environment-friendly water/alcohol soluble processing are two essential requirements for large-scale roll-to-roll commercial application. Based on this, we designed and synthesized two new n-type ETLs with tetraethylene pentamine or butyl sulfonate sodium substituted tetraethylene pentamine as the branched side chains and high electron affinities perylene diimide (PDI) as the central core, named as PDIPN and PDIPNSO₃Na. Encouragingly, both PDIPN and PDIPNSO₃Na can effectively reduce the interfacial barrier and improve the interfacial contact. In addition, both of them can exhibit strong n-type self-doping effects, especially the PDIPN with higher density of negative charge. Consequently, compared to bare ITO, the PCE of the devices with ITO/PDIPN and ITO/PDIPNSO₃Na ETLs has increased to 3-4 times. Our research results indicate that n-type self-doping PDI-based ETL PDIPN and PDIPNSO₃Na could be promising candidates for ETL in environment-friendly water/alcohol soluble processing large-scale PSCs.
Project description:The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS2) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report electrochemical exfoliation of large-aspect-ratio (>100) semiconducting flakes of tungsten diselenide (WSe2) and tungsten disulfide (WS2) as well as MoS2 as a comparison. We use Langmuir-Schaefer coating to achieve highly aligned and conformal flake networks, with minimal mesoporosity (∼2-5%), at low processing temperatures (120 °C) and without acid treatments. This allows us to fabricate electrochemical transistors in ambient air, achieving average mobilities of μMoS2 ≈ 11 cm2 V-1 s-1, μWS2 ≈ 9 cm2 V-1 s-1, and μWSe2 ≈ 2 cm2 V-1 s-1 with a current on/off ratios of Ion/Ioff ≈ 2.6 × 103, 3.4 × 103, and 4.2 × 104 for MoS2, WS2, and WSe2, respectively. Moreover, our transistors display threshold voltages near ∼0.4 V with subthreshold slopes as low as 182 mV/dec, which are essential factors in maintaining power efficiency and represent a 1 order of magnitude improvement in the state of the art. Furthermore, the performance of our WSe2 transistors is maintained on polyethylene terephthalate (PET) even after 1000 bending cycles at 1% strain.
Project description:Adequately understanding band inversion mechanism, one of the significant representations of topological phase, has substantial implications for design and regulation of topological insulators (TIs). Here, by identifying an unconventional band inversion, we propose an intrinsic quantum spin Hall (QSH) effect in iodinated group-V binary (ABI2) monolayers with a bulk gap as large as 0.409 eV, guaranteeing its viable application at room temperature. The nontrivial topological characters, which can be established by explicit demonstration of Z2 invariant and gapless helical edge states, are derived from the band inversion of antibonding states of p x,y orbitals at the K point. Furthermore, the topological properties are tunable under strain engineering and external electric field, which supplies a route to manipulate the spin/charge conductance of edge states. These findings not only provide a new platform to better understand the underlying origin of QSH effect in functionalized group-V films, but also are highly desirable to design large-gap QSH insulators for practical applications in spintronics.