Unknown

Dataset Information

0

Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions.


ABSTRACT: Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimide (PDI) derivatives which differ in their substitution. We have used the time-resolved microwave photoconductivity technique and measured charge carrier mobilities of 0.32 and 0.02 cm2/(Vs) and determined exciton diffusion lengths of 60 and 18 nm for octyl- and bulky hexylheptyl-imide substituted PDIs, respectively. This diffusion length is independent of substrate type and aggregate domain size. The differences in charge carrier mobility and exciton diffusion length clearly reflect the effect of solid-state packing of PDIs on their optoelectronic properties and show that significant improvements can be obtained by effectively controlling the solid-state packing.

SUBMITTER: Felter KM 

PROVIDER: S-EPMC6880777 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interplay between Charge Carrier Mobility, Exciton Diffusion, Crystal Packing, and Charge Separation in Perylene Diimide-Based Heterojunctions.

Felter Kevin M KM   Caselli Valentina M VM   Günbaş D Deniz DD   Savenije Tom J TJ   Grozema Ferdinand C FC  

ACS applied energy materials 20191003 11


Two of the key parameters that characterize the usefulness of organic semiconductors for organic or hybrid organic/inorganic solar cells are the mobility of charges and the diffusion length of excitons. Both parameters are strongly related to the supramolecular organization in the material. In this work we have investigated the relation between the solid-state molecular packing and the exciton diffusion length, charge carrier mobility, and charge carrier separation yield using two perylene diimi  ...[more]

Similar Datasets

| S-EPMC7132576 | biostudies-literature
| S-EPMC11008685 | biostudies-literature
| S-EPMC5990788 | biostudies-literature
| S-EPMC8163386 | biostudies-literature
| S-EPMC8133027 | biostudies-literature
| S-EPMC11336905 | biostudies-literature
| S-EPMC4522682 | biostudies-other
| S-EPMC7116049 | biostudies-literature
| S-EPMC9202308 | biostudies-literature
| S-EPMC5969822 | biostudies-other