Phylogenetic analysis of the entire genome of influenza A (H3N2) viruses from Japan: evidence for genetic reassortment of the six internal genes.
Ontology highlight
ABSTRACT: Nucleotide sequences of all eight RNA segments of 10 human H3N2 influenza viruses isolated during a 5-year period from 1993 to 1997 were determined and analyzed phylogenetically in order to define the evolutionary pathways of all genes in a parallel fashion. It was evident that the hemagglutinin and neuraminidase genes of these viruses evolved essentially in a single lineage and that amino acid changes accumulated sequentially with respect to time. In contrast, amino acid differences in the internal proteins were erratic and did not accumulate over time. Parallel analysis of the phylogenetic patterns of all genes revealed that the evolutionary pathways of the six internal genes were not linked to the surface glycoproteins. Genes coding for the basic polymerase-1, nucleoprotein, and matrix proteins of 1997 isolates were closest phylogenetically to those of earlier isolates of 1993 and 1994. Furthermore, all six internal genes of four viruses isolated in the 1995 epidemic season consistently divided into two distinct branch clusters, and two 1995 isolates contained PB2 genes apparently originating from those of viruses before 1993. It was apparent that the lack of correlation between the topologies of the phylogenetic trees of the genes coding for the surface glycoproteins and internal proteins was a reflection of genetic reassortment among human H3N2 viruses. This is the first evidence demonstrating the occurrence of genetic reassortment involving the internal genes of human H3N2 viruses. Furthermore, internal protein variability coincided with marked increases in the activity of H3N2 viruses in 1995 and 1997.
SUBMITTER: Lindstrom SE
PROVIDER: S-EPMC110138 | biostudies-literature | 1998 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA