Project description:A genetic susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infections in ruminants has been longtime suspected to exist. Recently, natural infections in cattle have been reclassified into latent and patent forms based on histopathological findings and their associations with immunological and microbiological variables. This study aims to explore whether these newly defined phenotypes are associated with twenty-four single-nucleotide polymorphisms (SNPs) in six bovine candidate genes: nucleotide-binding oligomerization domain 2 (NOD2), solute carrier family 11 member A1 (SLC11A1), nuclear body protein SP110 (SP110), toll-like receptors (TLRs) 2 and 4, and CD209 (also known as DC-SIGN, dendritic cell-specific ICAM3-grabbing nonintegrin). SNPs were genotyped for 772 Holstein-Friesian animals (52.6% apparently free; 38.1% latent; 9.3% patent) by TaqMan OpenArray technology. Genotypic-phenotypic associations were assessed by logistic regression analysis adjusted for age at slaughter, under five models (codominant, dominant, recessive, overdominant, and log-additive), and corrected for multiple testing. The rs208222804 C allele (CD209 gene) was found to be associated with latent paratuberculosis (log-additive model: P < 0.0034 after permutation procedure; OR = 0.64, 95% CI = 0.48-0.86). No significant association was detected between any SNP and the patent phenotype. Consequently, CD209 gene may play a key role in the pathogenesis of bovine paratuberculosis.
Project description:The aim of the present study was to evaluate the genotype and allele frequencies of 24 polymorphisms in casein alpha S1 (CSN1S1), casein alpha S2 (CSN1S2), beta-casein (CSN2), kappa-casein (CSN3), and progestagen-associated endometrial protein (PAEP) genes. The study included 1900 Polish Black and White Holstein-Friesian dairy cows that were subjected to genotyping via microarrays. A total of 24 SNPs (Single Nucleotide Polymorphisms) within tested genes were investigated. Two CSN1S1 SNPs were monomorphic, while allele CSN1S1_3*G in CSN1S1_3 SNP dominated with a frequency of 99.39%. Out of seven CSN2 SNPs, four were polymorphic; however, only for CSN2_3 all three genotypes were detected. Only three out of nine SNPs within CSN3 were monomorphic. Three PAEP SNPs were also found to be polymorphic with heterozygotes being most frequent. Hardy-Weinberg equilibrium (HWE) was observed for eight variants. It was shown that only CSN3_6 was not in HWE. The fact that many of investigated SNPs were monomorphic may suggest that in the past the reproduction program favored one of these genotypes. SNPs that are included in commercially available microarrays should be monitored in relation to changes in their frequencies. If a SNP has turned monomorphic, maybe it should be considered for removal from the microarray.
Project description:To improve the genomic evaluation of milk-related traits in Holstein-Friesian (HF) cattle it is essential to identify the associated candidate genes. Novel SNP-based analyses, such as the genetic mapping of inherited diseases, GWAS, and genomic selection, have led to a new era of research. The aim of this study was to analyze the association of each individual SNP in Serbian HF cattle with milk production traits and inbreeding levels. The SNP 60 K chip Axiom Bovine BovMDv3 was deployed for the genotyping of 334 HF cows. The obtained genomic results, together with the collected phenotypic data, were used for a GWAS. Moreover, the identification of ROH segments was performed and served for inbreeding coefficient evaluation and ROH island detection. Using a GWAS, a polymorphism, rs110619097 (located in the intron of the CTNNA3 gene), was detected to be significantly (p < 0.01) associated with the milk protein concentration in the first lactation (adjusted to 305 days). The average genomic inbreeding value (FROH) was 0.079. ROH islands were discovered in proximity to genes associated with milk production traits and genomic regions under selection pressure for other economically important traits of dairy cattle. The findings of this pilot study provide useful information for a better understanding of the genetic architecture of milk production traits in Serbian HF dairy cows and can be used to improve lactation performances in Serbian HF cattle breeding programs.
Project description:BackgroundContemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems). This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input).ResultsSignificant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires.ConclusionsA total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework upon which to identify the causal mechanisms underlying the various milk production traits and somatic cell score. Consequently this will deepen our understanding of how these traits are expressed.
Project description:The insulin-like growth factor (IGF-I) and growth hormone (GH) genes have been identified as major regulators of milk yield and composition, and reproductive performance in cattle. Genetic variations/polymorphism in these genes have been found to influence milk production, yield and quality. This investigation aimed to explore the association between IGF-I and GH polymorphisms and milk yield and composition, and reproductive performance in a herd consisting of 1000 Holstein-Friesian (HF) dairy cattle from El-Alamia farm. The experimental animals were 76 ± 7.25 months in age, with an average live weight of 750 ± 50.49 kg, and raised under the same conditions of feeding and weather. The studied animals were divided into three categories; high producers (n = 280), medium producers (n = 318) and low producers (n = 402). The digestion of 249 bp for IGF-I-SnaBI using the Restriction-fragment-length-polymorphism (RFLP) technique yielded two alleles; T (0.59) and C (0.41) and three genotypes; TT (0.52), TC (0.39) and CC (0.09) and this agrees with the results of DNA/gene sequencing technique. The sequencing analysis of the IGF-I gene revealed polymorphism in position 472 (C > T). Nucleotide sequencing of the amplified fragment of the IGF-I gene of different genotypes was done and submitted to the NCBI GenBank with Accession no. MH156812.1 and MH156811.1. While the digestion of 432 bp for GH-AluI using the RFLP technique yielded two alleles; A (0.81) and G (0.19) and two genotypes; AA (0.77) and AG (0.23) and this agrees with the results of DNA/gene sequencing technique. The sequencing analysis of the GH gene revealed polymorphism in the position 1758 C > G and in turn led to changes in amino acid sequence as Alanine for (A) compared to Glycine for (G). Nucleotide sequencing of the amplified fragment of the GH gene was done and submitted to the NCBI GenBank with Accession no. MH156810.1. The results of this study demonstrate the effects of variants of the GH-IGF-I somatotrophic axis on milk production and composition traits in commercial HF cattle. The greatest values of milk yield and reproductive performance were observed on IGF-I-SnaBI-TC and GH-AluI-AG genotypes. While the greatest % fat and % protein values were observed on IGF-I-SnaBI-CC and GH-AluI-AA genotyped individuals. The genetic variation of the studied genes can be utilized in selecting animals with superior milk yield, composition and reproductive performance in Holstein-Friesian Dairy Cattle under subtropical conditions.
Project description:Holstein cattle are well known for their high average milk yield but are more susceptible to disease and have lower fecundity than other breeds of cattle. The purpose of this study was to explore the relationship between ruminal metabolites and both milk performance and ruminal microbiota composition as a means of assessing the benefits of crossbreeding Montbéliarde and Holstein cattle. This experiment crossbred Holstein with Montbéliarde cattle, aimed to act as a reference for producing high-quality dairy products and improving the overall efficiency of dairy cattle breeding. Based on similar age, parity and lactation time, 46 cows were selected and divided into two groups (n = 23 per group) for comparison experiment and fed the same formula: Montbéliarde×Holstein (MH, DIM = 33.23 ± 5.61 d), Holstein (H, DIM = 29.27 ± 4.23 d). Dairy herd improvement (DHI) data is an important basis for evaluating the genetic quality of bulls, understanding the quality level of milk, and improving feeding management. We collected the DHI data of these cows in the early lactation, middle lactation and late lactation period of 10 months. The results showed that the average milk production and protein content in Montbéliarde×Holstein were 1.76 kg (34.41 kg to 32.65 kg, p > 0.05) and 0.1% (3.54 to 3.44%, p < 0.05) higher than in Holstein cattle. Moreover, milk from Montbéliarde×Holstein cattle had lesser somatic cell score (1.66 to 2.02) than Holstein cattle (p < 0.01). A total of 10 experimental cattle in early lactation were randomly selected in the two groups (Lactation time = 92.70 ± 6.81), and ruminal fluid were collected by oral gastric tube. Using 16S rRNA microbial sequencing, we compared the ruminal microbiota composition and found that Montbéliarde×Holstein cattle had a lower abundance of Alphaproteobacteria (p < 0.05) and higher abundance of Selenomonas than Holstein cattle (p < 0.05). These bacteria play roles in protein degradation, nitrogen fixation and lactic acid degradation. The abundance of Succiniclasticum was also greater in Montbéliarde×Holstein cattle (p = 0.053). Through ruminal metabolome analysis, we found that the levels of trans-ferulic acid, pyrrole-2-carboxylic acid, and quinaldic acid were significantly increased in Montbéliarde×Holstein cattle, while that of lathosterol was significantly decreased. The changes in the levels of these metabolites could confer improved antioxidant, anti-inflammatory, and antibacterial activities.
Project description:BackgroundBovine tuberculosis is a significant veterinary and financial problem in many parts of the world. Although many factors influence infection and progression of the disease, there is a host genetic component and dissection of this may enlighten on the wider biology of host response to tuberculosis. However, a binary phenotype of presence/absence of infection presents a noisy signal for genomewide association study.Methodology/principal findingsWe calculated a composite phenotype of genetic merit for TB susceptibility based on disease incidence in daughters of elite sires used for artificial insemination in the Irish dairy herd. This robust measure was compared with 44,426 SNP genotypes in the most informative 307 subjects in a genome wide association analysis. Three SNPs in a 65 kb genomic region on BTA 22 were associated (i.e. p<10(-5), peaking at position 59588069, p = 4.02×10(-6)) with tuberculosis susceptibility.Conclusions/significanceA genomic region on BTA 22 was suggestively associated with tuberculosis susceptibility; it contains the taurine transporter gene SLC6A6, or TauT, which is known to function in the immune system but has not previously been investigated for its role in tuberculosis infection.
Project description:BackgroundProduction and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that affect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Effect-bearing variants often affect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic effects of variants in candidate genes. However, large sample sizes are required to achieve sufficient power. Multi-trait meta-analysis is one approach to deal with this problem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance.ResultsFor highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis compared with the subjective assessment of overlapping of single-trait QTL confidence intervals. Pleiotropic effects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confirmed by bivariate association analysis. The previously reported pleiotropic effects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic effects of variants in GHR on milk yield and fat yield were confirmed. Furthermore, our results suggested that variants in KCTD16, KCNK18 and ENSBTAG00000023629 had pleiotropic effects on milk production traits. For milk yield and mastitis resistance, we identified possible pleiotropic effects of variants in two genes, GC and DGAT1.ConclusionsMulti-trait meta-analysis improves our ability to detect pleiotropic interactions between milk production traits and identifies variants with pleiotropic effects on milk production traits and mastitis resistance. In particular, this should contribute to better understand the biological mechanisms that underlie the unfavorable genetic correlation between milk yield and mastitis.
Project description:Objective: The objective of this study was to assess the veracities of most admired strategy discriminant analysis (DA), in comparison to the artificial neural network (ANN) for the anticipation and classification of milk production level in Holstein Friesian cattle using their performances. Materials and Methods: A total of 3,460 performance records of imported and locally born Holstein Friesian cows were gathered during the period from 2000 to 2016 to compare two alternative techniques for predicting the level of production based on performance traits in dairy cattle with the use of statistical software (Statistical Package for the Social Sciences, version 20.0). Results: The findings of the comparison indicated that ANN was more impressive in the expectancy of milk production level than did an imitator statistical method based on DA. The accuracy of the ANN model was high for the winter season (79.5%), whereas it was 47.3% for DA. The current findings were assured via the areas under receiver operating characteristic curves (AUROC) for DA and ANN. AUROC curves were smaller in the condition of the DA model across different calving seasons compared with the ANN model. The inaccuracies of variations were significant at a 5% significance level utilizing paired sample t-test. Conclusion: ANN model can be used efficiently to predict the level of production across the different calving seasons compared to the DA model.
Project description:BackgroundEye pigmentation abnormalities in cattle are often related to albinism, Chediak-Higashi or Tietz like syndrome. However, mutations only affecting pigmentation of coat color and eye have also been described. Herein 18 Holstein Friesian cattle affected by bicolored and hypopigmented irises have been investigated.ResultsAffected animals did not reveal any ophthalmological or neurological abnormalities besides the specific iris color differences. Coat color of affected cattle did not differ from controls. Histological examination revealed a reduction of melanin pigment in the iridal anterior border layer and stroma in cases as cause of iris hypopigmentation. To analyze the genetics of the iris pigmentation differences, a genome-wide association study was performed using Illumina BovineSNP50 BeadChip genotypes of the 18 cases and 172 randomly chosen control animals. A significant association on bovine chromosome 8 (BTA8) was identified at position 60,990,733 with a -log10(p) = 9.17. Analysis of genotypic and allelic dependences between cases of iridal hypopigmentation and an additional set of 316 randomly selected Holstein Friesian cattle controls showed that allele A at position 60,990,733 on BTA8 (P = 4.0e-08, odds ratio = 6.3, 95% confidence interval 3.02-13.17) significantly increased the chance of iridal hypopigmentation.ConclusionsThe clinical appearance of the iridal hypopigmentation differed from previously reported cases of pigmentation abnormalities in syndromes like Chediak-Higashi or Tietz and seems to be mainly of cosmetic character. Iridal hypopigmentation is caused by a reduced content of melanin pigment in the anterior border layer and iridal stroma. A single genomic position on BTA8 was detected to be significantly associated with iridal hypopigmentation in examined cattle. To our knowledge this is the first report about this phenotype in Holstein Friesian cattle.