Project description:This study aimed to evaluate the synthesis of MgAl/LDH from the drying process perspective, evaluating the influence of temperature (75-90 °C) and time (16-20 h) in the drying process. The synthesis was performed, maintaining a ratio of 2:1 of Mg/Al, and the drying was conducted according to a 22 experimental design: four axial points and three repetitions at the central point. The surface area and pore diameter ranged from 4.09 to 18.55 m2/g and 12.50 to 24.46 nm. Fourier transform infrared (FTIR) analysis indicated the drying-caused variation of the LDH typical bands intensities. Scanning electron microscopy (SEM) images showed the tendency of the increase of agglomeration with the temperature elevation. The drying parameters' influence was evident for X-ray diffraction (XRD) analysis observing the crystallite size increment, from 13.10 to 38.94 nm, and basal spacing variation, from 7.52 to 7.64 Å. The statistical models for growing crystal and reduction of the basal spacing were physically consistent but with low values of R 2. The drying time and temperature had a considerable influence on the chemical, physical, structural, and morphological properties of LDH.
Project description:In this study, the chitosan-based release microspheres were prepared by spray drying method. Chitosan was used as the carrier material, and Panax notoginseng extract, Codonopsis extract, and Atractylodes extract (the mass ratio was 2:7:5) were active substance. The spray drying preparation process of microsphere was optimized by single factor experiment and L9 (34) orthogonal design. Drug loading (DL), particle size, and sustained release performance of microspheres were investigated. The mass fraction of chitosan was 1.5%, the mass ratio of drug to chitosan was 1:3, the inlet air temperature was 130°C, and the injection rate was 400 ml/hr. The chitosan-based microspheres prepared under the above conditions had a smooth surface, and the DL was 23.87 ± 0.93%; the average particle diameter was 10.27 ± 1.05 ?m, and the encapsulation efficiency (EE) of the microspheres was 91.28 ± 1.04%. The preparation process of chitosan-based drug microsphere prepared by spray drying method was simple and stable. The prepared microspheres in this paper showed a sustained release effect in vitro.
Project description:The combination of layered double hydroxides (LDH) with graphene oxide (GO) enables the formation of nanohybrids with improved properties. This work focuses on the structural and catalytic properties of Ce-containing MgAl LDH-GO composites bearing different concentrations of GO in the range of 5-25 wt.%. The synthesis of the composites was performed by co-precipitating the LDH phase in the presence of GO, while their characterization was performed using XRF, XRD, DRIFT, Raman, SEM, nitrogen adsorption-desorption, and acidity-basicity measurements. The LDH-GO composites, showing redox, basic, and acid catalytic functions, were tested in two different types of organic transformations: (i) Knoevenagel condensation and (ii) one-pot cascade oxidation-Knoevenagel condensation. (i) The cinnamic acid was synthesized by the Knoevenagel condensation of benzaldehyde with diethylmalonate. The composites showed catalytic performances in strong contrast to neat LDH or GO, suggesting a synergistic interaction between the two components. During Knoevenagel condensation, the catalytic activity increased with the GO content in the hybrids up to 15 wt.% and decreased afterwards. (ii) 2-Benzoyl-3-phenylacrylonitrile was synthesized by the aerobic oxidation of benzyl alcohol followed by the Knoevenagel condensation with benzoyl acetonitrile using three different non-polar solvents, i.e., toluene, benzene, and mesitylene. The conversion of benzyl alcohol was higher for the hybrid materials compared to the individual components but decreased with the increase of the graphene oxide concentration.
Project description:Layered double hydroxides (LDHs) usually aggregate irregularly and hardly redisperse in water. Moreover, the affinity of LDHs is poor for organic compounds. In this study, three different core-shell composites, i.e. CMS@MgAl-LDH, CMS@NiAl-LDH, and CMS@ZnAl-LDH, were synthesized by direct fabrication of LDH nanoplatelets onto carbon microspheres (CMS) for the removal of the adsorbed 2,4-dichlorophenoxyacetic acid (2,4-D). The CMS@LDH composites show good water-dispersity due to the 3D hierarchical sphere structure and high affinity for 2,4-D due to the organic carbon cores that possess abundant hydrophobic compounds. It was found that the adsorption process was rapid, and the time required to reach the sorption equilibrium was within 100 min. The theoretical DFT calculation analysis suggested that the adsorption of 2,4-D on the CMS@LDH composites was dominated by π-π interactions, ion-exchange, and hydrogen bonding. The core-shell CMS@LDH composites can serve as a promising adsorbent that offers a rapid and effective adsorption capacity for the removal of 2,4-D in an aqueous solution.
Project description:Spray drying is one of the most frequently used solvent-based processes for manufacturing amorphous solid dispersions (ASDs). However, the resulting fine powders usually require further downstream processing when intended for solid oral dosage forms. In this study, we compare properties and performance of spray-dried ASDs with ASDs coated onto neutral starter pellets in mini-scale. We successfully prepared binary ASDs with a drug load of 20% Ketoconazole (KCZ) or Loratadine (LRD) as weakly basic model drugs and hydroxypropyl-methyl-cellulose acetate succinate or methacrylic acid ethacrylate copolymer as pH-dependent soluble polymers. All KCZ/ and LRD/polymer mixtures formed single-phased ASDs, as indicated by differential scanning calorimetry, X-ray powder diffraction and infrared spectroscopy. All ASDs showed physical stability for 6 months at 25 °C/65% rH and 40 °C/0% rH. Normalized to their initial surface area available to the dissolution medium, all ASDs showed a linear relationship of surface area and solubility enhancement, both in terms of supersaturation of solubility and initial dissolution rate, regardless of the manufacturing process. With similar performance and stability, processing of ASD pellets showed the advantages of a superior yield (>98%), ready to use for subsequent processing into multiple unit pellet systems. Therefore, ASD-layered pellets are an attractive alternative in ASD-formulation, especially in early formulation development at limited availability of drug substance.
Project description:Nitrogen-doped mesoporous carbon microspheres have been successfully synthesized via a spray drying-vapor deposition method for the first time, using commercial Ludox silica nanoparticles as hard templates. Compared to freeze-drying and air-drying methods, mesoporous carbon with a higher packing density can be achieved through the spray drying method. Vapor deposition of polypyrrole followed by carbonization and etching is beneficial for the generation of ultra-thin carbon network. The mesoporous carbon microspheres possess a mesopore-dominate (95%) high surface area of 1528 m2 g-1, a wall thickness of 1.8 nm, and a nitrogen content of 8 at% in the framework. Benefiting from the increased apparent density, high mesopore surface area, and considerable nitrogen doping, the resultant mesoporous carbon microspheres show superior gravimetric/volumetric capacitance of 533.6 F g-1 and 208.1 F cm-3, good rate performance and excellent cycling stability in electric double-layer capacitors.
Project description:One of the major challenges in the removal of organic pollutants is to design a material with high efficiency and high flux that can remove both cationic and anionic dyes, oil-in-water (O/W) emulsion and heavy metal ions. Herein, we constructed novel chemically stabilized MgAl-layered-double-hydroxide/sepiolite (MgAl-LDH/Sep) composite membranes via 3D hierarchical architecture construction methods. These membranes were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD), etc. Benefiting from the presence of hydrophilic functional groups on the surface of the film, the membranes show an enhanced water flux (~1200 L·m-2 h-1), while keeping a high dyes rejection (above 99.8% for anionic and cationic dyes). Moreover, the CA membrane coupled with MgAl-LDH/Sep exhibits a multifunctional characteristic for the efficient removal of mesitylene (99.2%), petroleum ether (99.03%), decane (99.07%), kerosene (99.4%) and heavy metal ion in water due to the layer-by-layer sieving. This hierarchical architecture is proved to have excellent environmental and chemical stability. Therefore, the membrane has potential in the treatment of sewage wastewater.
Project description:Phase-pure ZnMn2O4 nanopowders and their aggregated microsphere powders for use as anode material in lithium-ion batteries were obtained by a simple spray drying process using zinc and manganese salts as precursors, followed by citric acid post-annealing at different temperatures. X-ray diffraction (XRD) analysis indicated that phase-pure ZnMn2O4 powders were obtained even at a low post-annealing temperature of 400 °C. The post-annealed powders were transformed into nanopowders by simple milling process, using agate mortar. The mean particle sizes of the ZnMn2O4 powders post-treated at 600 and 800 °C were found to be 43 and 85 nm, respectively, as determined by TEM observation. To provide practical utilization, the nanopowders were transformed into aggregated microspheres consisting of ZnMn2O4 nanoparticles by a second spray drying process. Based on the systematic analysis, the optimum post-annealing temperature required to obtain ZnMn2O4 nanopowders with high capacity and good cycle performance was found to be 800 °C. Moreover, aggregated ZnMn2O4 microsphere showed improved cycle stability. The discharge capacities of the aggregated microsphere consisting of ZnMn2O4 nanoparticles post-treated at 800 °C were 1235, 821, and 687 mA h g-1 for the 1st, 2nd, and 100th cycles at a high current density of 2.0 A g-1, respectively. The capacity retention measured after the second cycle was 84%.
Project description:This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples -- low density particles, composite particles, microencapsulation, and glass stabilization -- is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts.
Project description:A method of microalgae-templated spray drying to develop hierarchical porous Fe3O4/C composite microspheres as anode materials for Li-ion batteries was developed. During the spray-drying process, individual microalgae serve as building blocks of raspberry-like hollow microspheres via self-assembly. In the present study, microalgae-derived carbon matrices, naturally doped heteroatoms, and hierarchical porous structural features synergistically contributed to the high electrochemical performance of the Fe3O4/C composite microspheres, enabling a discharge capacity of 1375 mA·h·g-1 after 700 cycles at a current density of 1 A/g. Notably, the microalgal frameworks of the Fe3O4/C composite microspheres were maintained over the course of charge/discharge cycling, thus demonstrating the structural stability of the composite microspheres against pulverization. In contrast, the sample fabricated without microalgal templating showed significant capacity drops (up to ~40% of initial capacity) during the early cycles. Clearly, templating of microalgae endows anode materials with superior cycling stability.