Project description:Acute myeloid leukemia (AML) is organized as a cellular hierarchy initiated and maintained by a subset of self-renewing leukemia stem cells (LSC). We hypothesized that increased CD47 expression on human AML LSC contributes to pathogenesis by inhibiting their phagocytosis through the interaction of CD47 with an inhibitory receptor on phagocytes. We found that CD47 was more highly expressed on AML LSC than their normal counterparts, and that increased CD47 expression predicted worse overall survival in three independent cohorts of adult AML patients. Furthermore, blocking monoclonal antibodies directed against CD47 preferentially enabled phagocytosis of AML LSC and inhibited their engraftment in vivo. Finally, treatment of human AML LSC-engrafted mice with anti-CD47 antibody depleted AML and targeted AML LSC. In summary, increased CD47 expression is an independent, poor prognostic factor that can be targeted on human AML stem cells with blocking monoclonal antibodies capable of enabling phagocytosis of LSC.
Project description:Carnitine palmitoyl transferase 1A (CPT1A) protein catalyzes the rate-limiting step of Fatty-acid oxidation (FAO) pathway, which can promote cell proliferation and suppress apoptosis. Targeting CPT1A has shown remarkable anti-leukemia activity. But, its prognostic value remains unclear in Acute Myeloid Leukemia (AML). In two independent cohorts of cytogenetically normal AML (CN-AML) patients, compared to low expression of CPT1A (CPT1Alow), high expression of CPT1A (CPT1Ahigh) was significantly associated with adverse outcomes, which was also shown in European Leukemia Network (ELN) Intermediate-I category. Multivariable analyses adjusting for known factors confirmed CPT1Ahigh as a high risk factor. Significant associations between CPT1Ahigh and adverse outcomes were further validated whether for all AML patients (OS: P=0.008; EFS: P=0.002, n=334, no M3) or for National Comprehensive Cancer Network (NCCN) Intermediate-Risk subgroup (OS: P=0.021, EFS: P=0.024, n=173). Multiple omics analysis revealed aberrant alterations of genomics and epigenetics were significantly associated with CPT1A expression, including up- and down-regulation of oncogenes and tumor suppressor, activation and inhibition of leukemic (AML, CML) and immune activation pathways, hypermethylation enrichments on CpG island and gene promoter regions. Combined with the previously reported anti-leukemia activity of CPT1A's inhibitor, our results proved CPT1A as a potential prognosticator and therapeutic target for AML.
Project description:BACKGROUND: Chronic Myeloid Leukemia (CML) is a malignant pluripotent stem cells disorder of myeloid cells. In CML patients, polymorphonuclear leukocytes (PMNL) the terminally differentiated cells of myeloid series exhibit defects in several actin dependent functions such as adhesion, motility, chemotaxis, agglutination, phagocytosis and microbicidal activities. A definite and global abnormality was observed in stimulation of actin polymerization in CML PMNL. Signalling molecules ras and rhoGTPases regulate spatial and temporal polymerization of actin and thus, a broad range of physiological processes. Therefore, status of these GTPases as well as actin was studied in resting and fMLP stimulated normal and CML PMNL. METHODS: To study expression of GTPases and actin, Western blotting and flow cytometry analysis were done, while spatial expression and colocalization of these proteins were studied by using laser confocal microscopy. To study effect of inhibitors on cell proliferation CCK-8 assay was done. Significance of differences in expression of proteins within the samples and between normal and CML was tested by using Wilcoxon signed rank test and Mann-Whitney test, respectively. Bivariate and partial correlation analyses were done to study relationship between all the parameters. RESULTS: In CML PMNL, actin expression and its architecture were altered and stimulation of actin polymerization was absent. Differences were also observed in expression, organization or stimulation of all the three GTPases in normal and CML PMNL. In normal PMNL, ras was the critical GTPase regulating expression of rhoGTPases and actin and actin polymerization. But in CML PMNL, rhoA took a central place. In accordance with these, treatment with rho/ROCK pathway inhibitors resulted in specific growth inhibition of CML cell lines. CONCLUSIONS: RhoA has emerged as the key molecule responsible for functional defects in CML PMNL and therefore can be used as a therapeutic target in CML.
Project description:Histone deacetylase 8 (HDAC8), a class I HDAC that modifies non-histone proteins such as p53, is highly expressed in different hematological neoplasms including a subtype of acute myeloid leukemia (AML) bearing inversion of chromosome 16 [inv(16)]. To investigate HDAC8 contribution to hematopoietic stem cell maintenance and myeloid leukemic transformation, we generated a zebrafish model with Hdac8 overexpression and observed an increase in hematopoietic stem/progenitor cells, a phenotype that could be reverted using a specific HDAC8 inhibitor, PCI-34051 (PCI). In addition, we demonstrated that AML cell lines respond differently to PCI treatment: HDAC8 inhibition elicits cytotoxic effect with cell cycle arrest followed by apoptosis in THP-1 cells, and cytostatic effect in HL60 cells that lack p53. A combination of cytarabine, a standard anti-AML chemotherapeutic, with PCI resulted in a synergistic effect in all the cell lines tested. We, then, searched for a mechanism behind cell cycle arrest caused by HDAC8 inhibition in the absence of functional p53 and demonstrated an involvement of the canonical WNT signaling in zebrafish and in cell lines. Together, we provide the evidence for the role of HDAC8 in hematopoietic stem cell differentiation in zebrafish and AML cell lines, suggesting HDAC8 inhibition as a therapeutic target in hematological malignancies. Accordingly, we demonstrated the utility of a highly specific HDAC8 inhibition as a therapeutic strategy in combination with standard chemotherapy.
Project description:Acute myeloid leukemia (AML) is a biologically complex and molecularly and clinically heterogeneous disease, and its incidence increases with age. Cytogenetics and mutation testing remain important prognostic tools for treatment after induction therapy. The post-induction treatment is dependent on risk stratification. Despite rapid advances in determination of gene mutations involved in the pathophysiology and biology of AML, and the rapid development of new drugs, treatment improvements changed slowly over the past 30 years, with the majority of patients eventually experiencing relapse and dying of their disease. Allogenic hematopoietic stem cell transplantation remains the best chance of cure for patients with intermediate- or high-risk disease. This review gives an overview about advances in prognostic markers and novel treatment options for AML, focusing on new prognostic and probably therapeutic mutations, and novel drug therapies such as tyrosine kinase inhibitors.
Project description:BackgroundIdentifying therapeutic targets and prognostic biomarkers significantly contributes to individualized treatment of acute myeloid leukemia (AML). Dihydropyrimidinase-like 2 (DPYSL2) expression was decreased in homoharringtonine (HHT)-resistant AML cells, which were established by our group. DPYSL2 plays an important role in axon growth and has oncogene effect in glioblastoma. However, little research has been conducted to investigate the function of DPYSL2 in AML pathogenesis.MethodsAuto-docking was used to reveal the targeting relationship between HHT and DPYSL2. Overall survival (OS), event-free survival (EFS), and relapse-free survival (RFS) were used to evaluate the prognostic impact of DPYSL2 for AML. ShRNA was used to knockdown the expression of SPATS2L. Apoptosis was assessed by flow cytometry. In vivo growth and survival were assessed using a xenotransplantation mice model. RNA sequencing was performed to elucidate the molecular mechanisms underlying the role of SPATS2L in AML and were confirmed by Western blot.ResultsWe found DPYSL2 was the target of HHT. Next, we found AML cell lines and patients had higher DPYSL2 expression levels than the normal samples. Further multivariate analysis demonstrated that high DPYSL2 expression was an independent poor prognostic factor for OS, EFS, and RFS in AML. Inhibition of DPYSL2 expression suppressed cell growth, induced apoptosis in AML cell lines, and prolonged the survival of AML xenograft NCG mice. Through RNA-seq analysis from TCGA and our data, the JAK2/STAT3/STAT5-PI3K P85/AKT/GSK3b axis was thought to be the critical pathway in regulating DPYSL2 in AML development.ConclusionsWe first time confirmed that DPYSL2 was a target of HHT and played an oncogene role in AML by regulating JAK/STAT signaling pathway. Therefore, DPYSL2 could serve as a novel prognostic marker and therapeutic target for AML treatment.
Project description:BackgroundLong noncoding RNAs (lncRNA) play a role in leukemogenesis, maintenance, development, and therapeutic resistance of AML. While few studies have focused on the prognostic significance of LINC00649 in AML, which we aim to investigate in this present study.MethodsWe compared the expression level of LINC00649 between AML patients and healthy controls. The Kaplan-Meier curves of AML patients expressing high versus low level of LINC00649 was performed. The LINC00649 correlated genes/miRNAs/lncRNAs and methylation CpG sites were screened by Pearson correlation analysis with R (version 3.6.0), using TCGA-LAML database. The LINC00649 associated ceRNA network was established using lncBase 2.0 and miRWalk 2.0 online tools, combining results from correlation analysis. Finally, a prediction model was constructed using LASSO-Cox regression.ResultsLINC00649 was underexpressed in bone marrow of AML group than that in healthy control group. The patients of LINC00649-low group have significantly inferior PFS and OS. A total of 154 mRNAs, 31 miRNAs, 28 lncRNAs and 1590 methylated CpG sites were identified to be significantly correlated with LINC00649. Furthermore, the network of ceRNA was established with 6 miRNAs and 122 mRNAs. The Lasso-Cox model fitted OS/PFS to novel prediction models, which integrated clinical factors, ELN risk stratification, mRNA/miRNA expression and methylation profiles. The analysis of time-dependent ROC for our model showed a superior AUC (AUC = 0.916 at 1 year, AUC = 0.916 at 3 years, and AUC = 0.891 at 5 years).ConclusionsLow expression of LINC00649 is a potential unfavorable prognostic marker for AML patients, which requires the further validation. The analysis by LASSO-COX regression identified a novel comprehensive model with a superior diagnostic utility, which integrated clinical and genetic variables.
Project description:IntroductionImmediate early response 3 (IER3) has association with hematological malignancies' risk and prognosis, such as myelodysplastic syndrome, while its relation to acute myeloid leukemia (AML) is not clear. This study aimed to explore the correlation of IER3 with AML risk, clinical characteristics, complete remission (CR), event-free survival (EFS), and overall survival (OS).MethodsA total of 93 de novo AML patients were included in this study. In addition, 30 patients with non-hyperplasia hematologic malignancies requiring bone marrow testing (as disease controls) and 30 health donors (as health controls) were also recruited. Bone morrow samples of AML patients (before treatment), disease controls (before treatment), and health controls (at donation) were collected. IER3 in bone marrow mononuclear cells was detected by reverse transcription-quantitative polymerase chain reaction.ResultsIER3 was increased in AML patients compared with disease controls and health donors (both P < .001), and receiver operating characteristic (ROC) curve showed that IER3 had certain capability of distinguishing AML patients from disease controls (area under curve (AUC): 0.735, 95% confidence interval (CI): 0.650-0.820), and health donors (AUC: 0.789, 95% CI: 0.712-0.866). Meanwhile, IER3 was correlated with FLT3-ITD mutation (P = .030) and poor NCCN risk stratification (P = .031) in AML patients. Moreover, IER3 had negative association with CR in AML patients (P = .022), and showed certain potential in discriminating CR patients from non-CR patients (AUC: 0.655, 95% CI: 0.533-0.777). Besides, IER3 was negatively associated with EFS (P = .033), but not OS (P = .083) in AML patients.ConclusionIER3 dysregulation serves as a potential prognostic factor in AML patients.
Project description:: Human CD157/BST-1 and CD38 are dual receptor-enzymes derived by gene duplication that belong to the ADP ribosyl cyclase gene family. First identified over 30 years ago as Mo5 myeloid differentiation antigen and 10 years later as Bone Marrow Stromal Cell Antigen 1 (BST-1), CD157 proved not to be restricted to the myeloid compartment and to have a diversified functional repertoire ranging from immunity to cancer and metabolism. Despite being a NAD+-metabolizing ectoenzyme anchored to the cell surface through a glycosylphosphatidylinositol moiety, the functional significance of human CD157 as an enzyme remains unclear, while its receptor role emerged from its discovery and has been clearly delineated with the identification of its high affinity binding to fibronectin. The aim of this review is to provide an overview of the immunoregulatory functions of human CD157/BST-1 in physiological and pathological conditions. We then focus on CD157 expression in hematological tumors highlighting its emerging role in the interaction between acute myeloid leukemia and extracellular matrix proteins and its potential utility for monoclonal antibody targeted therapy in this disease.