Project description:Determining the fitness of specific microbial genotypes has extensive application in microbial genetics, evolution, and biotechnology. While estimates from growth curves are simple and allow high throughput, they are inaccurate and do not account for interactions between costs and benefits accruing over different parts of a growth cycle. For this reason, pairwise competition experiments are the current "gold standard" for accurate estimation of fitness. However, competition experiments require distinct markers, making them difficult to perform between isolates derived from a common ancestor or between isolates of nonmodel organisms. In addition, competition experiments require that competing strains be grown in the same environment, so they cannot be used to infer the fitness consequence of different environmental perturbations on the same genotype. Finally, competition experiments typically consider only the end-points of a period of competition so that they do not readily provide information on the growth differences that underlie competitive ability. Here, we describe a computational approach for predicting density-dependent microbial growth in a mixed culture utilizing data from monoculture and mixed-culture growth curves. We validate this approach using 2 different experiments with Escherichia coli and demonstrate its application for estimating relative fitness. Our approach provides an effective way to predict growth and infer relative fitness in mixed cultures.
Project description:Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella.
Project description:Microorganisms can be genetically engineered to solve a range of challenges in diverse including health, environmental protection and sustainability. The natural complexity of biological systems makes this an iterative cycle, perturbing metabolism and making stepwise progress toward a desired phenotype through four major stages: design, build, test, and data interpretation. This cycle has been accelerated by advances in molecular biology (e.g. robust DNA synthesis and assembly techniques), liquid handling automation and scale-down characterization platforms, generating large heterogeneous data sets. Here, we present an extensible Python package for scientists and engineers working with large biological data sets to interpret, model, and visualize data: the IMPACT (Integrated Microbial Physiology: Analysis, Characterization and Translation) framework. Impact aims to ease the development of Python-based data analysis workflows for a range of stakeholders in the bioengineering process, offering open-source tools for data analysis, physiology characterization and translation to visualization. Using this framework, biologists and engineers can opt for reproducible and extensible programmatic data analysis workflows, mediating a bottleneck limiting the throughput of microbial engineering. The Impact framework is available at https://github.com/lmse/impact.
Project description:When we collect the growth curves of many individuals, orderly variation in the curves is often observed rather than a completely random mixture of various curves. Small individuals may exhibit similar growth curves, but the curves differ from those of large individuals, whereby the curves gradually vary from small to large individuals. It has been recognized that after standardization with the asymptotes, if all the growth curves are the same (anamorphic growth curve set), the growth curve sets can be estimated using nonchronological data; otherwise, that is, if the growth curves are not identical after standardization with the asymptotes (polymorphic growth curve set), this estimation is not feasible. However, because a given set of growth curves determines the variation in the observed data, it may be possible to estimate polymorphic growth curve sets using nonchronological data.In this study, we developed an estimation method by deriving the likelihood function for polymorphic growth curve sets. The method involves simple maximum likelihood estimation. The weighted nonlinear regression and least-squares method after the log-transform of the anamorphic growth curve sets were included as special cases.The growth curve sets of the height of cypress (Chamaecyparis obtusa) and larch (Larix kaempferi) trees were estimated. With the model selection process using the AIC and likelihood ratio test, the growth curve set for cypress was found to be polymorphic, whereas that for larch was found to be anamorphic. Improved fitting using the polymorphic model for cypress is due to resolving underdispersion (less dispersion in real data than model prediction).The likelihood function for model estimation depends not only on the distribution type of asymptotes, but the definition of the growth curve set as well. Consideration of these factors may be necessary, even if environmental explanatory variables and random effects are introduced.
Project description:BackgroundAfter meningioma surgery, approximately 1 in 3 patients will have residual tumor that requires ongoing imaging surveillance. The precise volumetric growth rates of these tumors are unknown.ObjectiveTo identify the volumetric growth rates of residual meningioma, growth trajectory, and factors associated with progression.MethodsPatients with residual meningioma identified at a tertiary neurosurgery center between 2004 and 2020 were retrospectively reviewed. Tumor volume was measured using manual segmentation, after surgery and at every follow-up MRI scan. Growth rates were ascertained using a linear mixed-effects model and nonlinear regression analysis of growth trajectories. Progression was defined according to the Response Assessment in Neuro-Oncology (RANO) criteria (40% volume increase).ResultsThere were 236 patients with residual meningioma. One hundred and thirty-two patients (56.0%) progressed according to the RANO criteria, with 86 patients being conservatively managed (65.2%) after progression. Thirteen patients (5.5%) developed clinical progression. Over a median follow-up of 5.3 years (interquartile range, 3.5-8.6 years), the absolute growth rate was 0.11 cm 3 per year and the relative growth rate 4.3% per year. Factors associated with residual meningioma progression in multivariable Cox regression analysis were skull base location (hazard ratio [HR] 1.60, 95% CI 1.02-2.50) and increasing Ki-67 index (HR 3.43, 95% CI 1.19-9.90). Most meningioma exhibited exponential and logistic growth patterns (median R 2 value 0.84, 95% CI 0.60-0.90).ConclusionAbsolute and relative growth rates of residual meningioma are low, but most meet the RANO criteria for progression. Location and Ki-67 index can be used to stratify adjuvant treatment and surveillance paradigms.
Project description:Sigmoidal and double-sigmoidal dynamics are commonly observed in many areas of biology. Here we present sicegar, an R package for the automated fitting and classification of sigmoidal and double-sigmoidal data. The package categorizes data into one of three categories, "no signal," "sigmoidal," or "double-sigmoidal," by rigorously fitting a series of mathematical models to the data. The data is labeled as "ambiguous" if neither the sigmoidal nor double-sigmoidal model fit the data well. In addition to performing the classification, the package also reports a wealth of metrics as well as biologically meaningful parameters describing the sigmoidal or double-sigmoidal curves. In extensive simulations, we find that the package performs well, can recover the original dynamics even under fairly high noise levels, and will typically classify curves as "ambiguous" rather than misclassifying them. The package is available on CRAN and comes with extensive documentation and usage examples.
Project description:Halobacterium salinarum NRC-1 was grown in CM media, at 37oC in a waterbath with agitation of 125 rpm under constant light. Analysis of transcriptional changes during growth, in addition to mapping of transcriptome structure under the same conditions, provided interesting insights about regulatory logic within prokaryotic coding regions.
Project description:The ubiquitous heterotrophic marine bacterium, Rugeria pomeroyi, was experimentally cultured under both environmentally realistic carbon conditions and with a tracer-level addition of 13C-labeled leucine. Bacterial protein biosynthesis was tracked through exponential and stationary growth phases. This combination of methods allowed for observation of real-time bacterial protein production of an environmentally relevant marine bacterium under low-carbon conditions to understand metabolic priorities during different growth phases.
Project description:SummaryBacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses.Availability and implementationPMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb .Contactdcuevas08@gmail.com.Supplementary informationSupplementary data are available at Bioinformatics online.