Project description:Improved outcome prediction is vital for the delivery of risk-adjusted, appropriate and effective care to paediatric patients with Ewing sarcoma-the second most common paediatric malignant bone tumour. Fourier transform infrared (FTIR) spectroscopy of tissues allows the bulk biochemical content of a biological sample to be probed and makes possible the study and diagnosis of disease. In this retrospective study, FTIR spectra of sections of biopsy-obtained bone tissue were recorded. Twenty-seven patients (between 5 and 20 years of age) with newly diagnosed Ewing sarcoma of bone were included in this study. The prognostic value of FTIR spectra obtained from Ewing sarcoma (ES) tumours before and after neoadjuvant chemotherapy were analysed in combination with various data-reduction and machine learning approaches. Random forest and linear discriminant analysis supervised learning models were able to correctly predict patient mortality in 92% of cases using leave-one-out cross-validation. The best performing model for predicting patient relapse was a linear Support Vector Machine trained on the observed spectral changes as a result of chemotherapy treatment, which achieved 92% accuracy. FTIR spectra of tumour biopsy samples may predict treatment outcome in paediatric Ewing sarcoma patients with greater than 92% accuracy.
Project description:Bloodstream infections (BSI) are a main cause of infectious disease morbidity and mortality worldwide. Early prediction of BSI patients at high risk of poor outcomes is important for earlier decision making and effective patient stratification. We developed electronic medical record-based machine learning models that predict patient outcomes of BSI. The area under the receiver-operating characteristics curve was 0.82 for a full featured inclusive model, and 0.81 for a compact model using only 25 features. Our models were trained using electronic medical records that include demographics, blood tests, and the medical and diagnosis history of 7889 hospitalized patients diagnosed with BSI. Among the implications of this work is implementation of the models as a basis for selective rapid microbiological identification, toward earlier administration of appropriate antibiotic therapy. Additionally, our models may help reduce the development of BSI and its associated adverse health outcomes and complications.
Project description:BackgroundEndovascular therapy (EVT) was the standard treatment for acute ischemic stroke with large vessel occlusion. Prognosis after EVT is always a major concern. Here, we aimed to explore a predictive model for patients after EVT.MethodA total of 156 patients were retrospectively enrolled. The primary outcome was functional dependence (defined as a 90-day modified Rankin Scale score ≤ 2). Least absolute shrinkage and selection operator and univariate logistic regression were used to select predictive factors. Various machine learning algorithms, including multivariate logistic regression, linear discriminant analysis, support vector machine, k-nearest neighbors, and decision tree algorithms, were applied to construct prognostic models.ResultSix predictive factors were selected, namely, age, baseline National Institute of Health Stroke Scale (NIHSS) score, Alberta Stroke Program Early CT (ASPECT) score, modified thrombolysis in cerebral infarction score, symptomatic intracerebral hemorrhage (sICH), and complications (pulmonary infection, gastrointestinal bleeding, and cardiovascular events). Based on these variables, various models were constructed and showed good discrimination. Finally, a nomogram was constructed by multivariate logistic regression and showed a good performance.ConclusionOur nomogram, which was composed of age, baseline NIHSS score, ASPECT score, recanalization status, sICH, and complications, showed a very good performance in predicting outcome after EVT.
Project description:PurposeTo evaluate differences between orthodontists and general dentists in experience with clear aligners (CA), patients' demand and perception, types of patients, and malocclusion treated with CA and to compare the two groups of clinicians not using CA in their practice.MethodsA Web-based survey was developed and sent to the 129 members of the European Aligner Society and randomly to 200 doctors of dental surgery by e-mail. They responded on demographics and to one of two different parts for clinicians using CA or not using CA. Statistical analysis was performed with SAS EGv.6.1.ResultsThe response rate was 74%. Among the total of respondents, the majority reported utilizing CA in their practice with a greater percentage of orthodontists (P = 0.0040). Overall, orthodontists learned more about CA during academic seminars comparing to general dentists, and they treated more class I with crowding (P = 0.0002) and with open bite (P = 0.0462). The majority of patients treated with CA were female and adults with a full-time employment, and the patients' knowledge about CA treatment was mainly provided by information from external media advertising. For respondents not using CA, orthodontists were more likely to report that CA limit treatment outcomes, whereas general practitioners were reported not having enough experience to use them.ConclusionsThere were some significant differences between orthodontists and general dentists mainly in experience and case selection for clinicians using CA as well as in the reasons provided for not using CA in their practice.
Project description:We aim to determine if machine learning techniques, such as support vector machines (SVMs), can predict the occurrence of a second clinical attack, which leads to the diagnosis of clinically-definite Multiple Sclerosis (CDMS) in patients with a clinically isolated syndrome (CIS), on the basis of single patient's lesion features and clinical/demographic characteristics. Seventy-four patients at onset of CIS were scanned and clinically reviewed after one and three years. CDMS was used as the gold standard against which SVM classification accuracy was tested. Radiological features related to lesional characteristics on conventional MRI were defined a priori and used in combination with clinical/demographic features in an SVM. Forward recursive feature elimination with 100 bootstraps and a leave-one-out cross-validation was used to find the most predictive feature combinations. 30 % and 44 % of patients developed CDMS within one and three years, respectively. The SVMs correctly predicted the presence (or the absence) of CDMS in 71.4 % of patients (sensitivity/specificity: 77 %/66 %) at 1 year, and in 68 % (60 %/76 %) at 3 years on average over all bootstraps. Combinations of features consistently gave a higher accuracy in predicting outcome than any single feature. Machine-learning-based classifications can be used to provide an "individualised" prediction of conversion to MS from subjects' baseline scans and clinical characteristics, with potential to be incorporated into routine clinical practice.
Project description:Background: Endovascular treatment (EVT) is effective for stroke patients with a large vessel occlusion (LVO) of the anterior circulation. To further improve personalized stroke care, it is essential to accurately predict outcome after EVT. Machine learning might outperform classical prediction methods as it is capable of addressing complex interactions and non-linear relations between variables. Methods: We included patients from the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) Registry, an observational cohort of LVO patients treated with EVT. We applied the following machine learning algorithms: Random Forests, Support Vector Machine, Neural Network, and Super Learner and compared their predictive value with classic logistic regression models using various variable selection methodologies. Outcome variables were good reperfusion (post-mTICI ≥ 2b) and functional independence (modified Rankin Scale ≤2) at 3 months using (1) only baseline variables and (2) baseline and treatment variables. Area under the ROC-curves (AUC) and difference of mean AUC between the models were assessed. Results: We included 1,383 EVT patients, with good reperfusion in 531 (38%) and functional independence in 525 (38%) patients. Machine learning and logistic regression models all performed poorly in predicting good reperfusion (range mean AUC: 0.53-0.57), and moderately in predicting 3-months functional independence (range mean AUC: 0.77-0.79) using only baseline variables. All models performed well in predicting 3-months functional independence using both baseline and treatment variables (range mean AUC: 0.88-0.91) with a negligible difference of mean AUC (0.01; 95%CI: 0.00-0.01) between best performing machine learning algorithm (Random Forests) and best performing logistic regression model (based on prior knowledge). Conclusion: In patients with LVO machine learning algorithms did not outperform logistic regression models in predicting reperfusion and 3-months functional independence after endovascular treatment. For all models at time of admission radiological outcome was more difficult to predict than clinical outcome.
Project description:ObjectiveThe aim of this study was to evaluate the amount of external apical root resorption in patients who had undergone orthodontic treatment with clear aligners evaluated using cone beam computed tomography.MethodsStudies that evaluated external apical root resorption before and after comprehensive orthodontic treatment with clear aligners were assessed by performing an electronic search from 5 databases comprising PubMed, SCOPUS, EBSCO, Cochrane Library, and LILACS and manual searches in the relevant journals and the reference lists of the included studies. Database search, elimination of duplicate studies, and data extraction were performed independently by 2 authors. The quality of the included studies was assessed using the Risk of Bias in Non-randomised Studies-of Interventions and the Cochrane Collaboration's Risk of Bias Tool. Studies that reported the tooth length or volume were used for quantitative analyses.ResultsNine studies were included in the meta-analysis. The overall root length after clear aligner treatment was significantly decreased compared with the pre-treatment length using cone beam computed tomography (mean differences = -0.56 mm, 95% confidence interval [-0.73, -0.38], P < .00001). However, only the maxillary central incisors, maxillary lateral incisors, and mandibular central incisors had significant reduction in root length. The meta-analysis from 3 studies also indicated that the root volume of the upper incisors also significantly decreased (mean differences = -13.34 mm3, 95% confidence interval [-16.57, -10.10], P < .00001).ConclusionsCurrent evidence suggests that clear aligners can cause minimal root resorption. The highest amount of root resorption was observed in the maxillary central incisors.
Project description:BackgroundAdverse pregnancy outcomes pose significant risk to maternal and neonatal health, contributing to morbidity, mortality, and long-term developmental challenges. This study aimed to predict these outcomes in Rwanda using supervised machine learning algorithms.MethodsThis cross-sectional study utilized data from the Rwanda Demographic and Health Survey (RDHS, 2019-2020) involving 14,634 women. K-fold cross-validation (k = 10) and synthetic minority oversampling technique (SMOTE) were used to manage dataset partitioning and class imbalance. Descriptive and multivariate analyses were conducted to identify the prevalence and risk factors for adverse pregnancy outcomes. Seven machine learning algorithms were assessed for their accuracy, precision, recall, F1 score, and area under the curve (AUC).ResultsOf the pregnancies analyzed, 93.4% resulted in live births, while 4.5% ended in miscarriage, and 2.1% in stillbirth. Advanced maternal age(>30 years),women aged 30-34 years (adjusted odds ratio [AOR] = 5.755; 95% confidence interval [CI] = 3.085-10.074; p < 0.001), 35-39 years (AOR = 8.458; 95% CI = 4.507-10.571; p < 0.001), 40-44 years (AOR = 11.86; 95% CI = 6.250-21.842; p < 0.001), and 45-49 years (AOR = 14.233; 95% CI = 7.359-25.922; p < 0.001), compared to those aged 15-19 years, and multiple unions (polyandry) (AOR = 1.320; 95% CI = 1.104-1.573, p = 0.002), and women not visited by healthcare provider during pregnancy (AOR = 1.421; 95%CI = 1.300-1.611, p<0.001) were factors associated with an increased risk of adverse pregnancy outcomes. In contrast, being married (AOR = 0.894; 95% CI = 0.787-0.966) and attending at least two antenatal care (ANC) visits (AOR = 0.801; 95% CI = 0.664-0.961) were linked to reduced risk. The K-nearest neighbors (KNN) model outperformed other ML Models in predicting adverse pregnancy outcomes, achieving 86% accuracy, 89% precision, 97% recall, 93% F1 score, and an area under the curve (AUC) of 0.842. The ML models constantly highlighted that woman with advanced maternal age, those in multiple unions, and inadequate ANC were more susceptible to adverse pregnancy outcomes.ConclusionsMachine learning algorithms, particularly KNN, are effective in predicting adverse pregnancy outcomes, facilitating early intervention and improved maternal and neonatal care.
Project description:Importance:Social and economic costs of depression are exacerbated by prolonged periods spent identifying treatments that would be effective for a particular patient. Thus, a tool that reliably predicts an individual patient's response to treatment could significantly reduce the burden of depression. Objective:To estimate how accurately an outcome of escitalopram treatment can be predicted from electroencephalographic (EEG) data on patients with depression. Design, Setting, and Participants:This prognostic study used a support vector machine classifier to predict treatment outcome using data from the first Canadian Biomarker Integration Network in Depression (CAN-BIND-1) study. The CAN-BIND-1 study comprised 180 patients (aged 18-60 years) diagnosed with major depressive disorder who had completed 8 weeks of treatment. Of this group, 122 patients had EEG data recorded before the treatment; 115 also had EEG data recorded after the first 2 weeks of treatment. Interventions:All participants completed 8 weeks of open-label escitalopram (10-20 mg) treatment. Main Outcomes and Measures:The ability of EEG data to predict treatment outcome, measured as accuracy, specificity, and sensitivity of the classifier at baseline and after the first 2 weeks of treatment. The treatment outcome was defined in terms of change in symptom severity, measured by the Montgomery-Åsberg Depression Rating Scale, before and after 8 weeks of treatment. A patient was designated as a responder if the Montgomery-Åsberg Depression Rating Scale score decreased by at least 50% during the 8 weeks and as a nonresponder if the score decrease was less than 50%. Results:Of the 122 participants who completed a baseline EEG recording (mean [SD] age, 36.3 [12.7] years; 76 [62.3%] female), the classifier was able to identify responders with an estimated accuracy of 79.2% (sensitivity, 67.3%; specificity, 91.0%) when using only the baseline EEG data. For a subset of 115 participants who had additional EEG data recorded after the first 2 weeks of treatment, use of these data increased the accuracy to 82.4% (sensitivity, 79.2%; specificity, 85.5%). Conclusions and Relevance:These findings demonstrate the potential utility of EEG as a treatment planning tool for escitalopram therapy. Further development of the classification tools presented in this study holds the promise of expediting the search for optimal treatment for each patient.
Project description:BackgroundEarly illness course correlates with long-term outcome in psychosis. Accurate prediction could allow more focused intervention. Earlier intervention corresponds to significantly better symptomatic and functional outcomes. Our study objective is to use routinely collected baseline demographic and clinical characteristics to predict employment, education or training (EET) status, and symptom remission in patients with first episode psychosis (FEP) at one-year.Methods and findings83 FEP patients were recruited from National Health Service (NHS) Glasgow between 2011 and 2014 to a 24-month prospective cohort study with regular assessment of demographic and psychometric measures. An external independent cohort of 79 FEP patients were recruited from NHS Glasgow and Edinburgh during a 12-month study between 2006 and 2009. Elastic net regularised logistic regression models were built to predict binary EET status, period and point remission outcomes at one-year on 83 Glasgow patients (training dataset). Models were externally validated on an independent dataset of 79 patients from Glasgow and Edinburgh (validation dataset). Only baseline predictors shared across both cohorts were made available for model training and validation. After excluding participants with missing outcomes, models were built on the training dataset for EET status, period and point remission outcomes and externally validated on the validation dataset. Models predicted EET status, period and point remission with receiver operating curve (ROC) area under the curve (AUC) performances of 0.876 (95%CI: 0.864, 0.887), 0.630 (95%CI: 0.612, 0.647) and 0.652 (95%CI: 0.635, 0.670) respectively. Positive predictors of EET included baseline EET and living with spouse/children. Negative predictors included higher PANSS suspiciousness, hostility and delusions scores. Positive predictors for symptom remission included living with spouse/children, and affective symptoms on the Positive and Negative Syndrome Scale (PANSS). Negative predictors of remission included passive social withdrawal symptoms on PANSS. A key limitation of this study is the small sample size (n) relative to the number of predictors (p), whereby p approaches n. The use of elastic net regularised regression rather than ordinary least squares regression helped circumvent this difficulty. Further, we did not have information for biological and additional social variables, such as nicotine dependence, which observational studies have linked to outcomes in psychosis.Conclusions and relevanceUsing advanced statistical machine learning techniques, we provide the first externally validated evidence, in a temporally and geographically independent cohort, for the ability to predict one-year EET status and symptom remission in individual FEP patients.