Project description:BackgroundInflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), affect millions of people worldwide with increasing incidence.ObjectivesSeveral studies have shown a link between gut microbiota composition and IBD, but results are often limited by small sample sizes. We aimed to re-analyze publicly available fecal microbiota data from IBD patients.MethodsWe extracted original fecal 16S rRNA amplicon sequencing data from 45 cohorts of IBD patients and healthy individuals using the BioProject database at the National Center for Biotechnology Information. Unlike previous meta-analyses, we merged all study cohorts into a single dataset, including sex, age, geography, and disease information, based on which microbiota signatures were analyzed, while accounting for varying technical platforms.ResultsAmong 2518 individuals in the combined dataset, we discovered a hitherto unseen number of genera associated with IBD. A total of 77 genera associated with CD, of which 38 were novel associations, and a total of 64 genera associated with UC, of which 28 represented novel associations. Signatures were robust across different technical platforms and geographic locations. Reduced alpha diversity in IBD compared to healthy individuals, in CD compared to UC, and altered microbiota composition (beta diversity) in UC and especially in CD as compared to healthy individuals were found.ConclusionsCombining original microbiota data from 45 cohorts, we identified a hitherto unseen large number of genera associated with IBD. Identification of microbiota features robustly associated with CD and UC may pave the way for the identification of new treatment targets.
Project description:BackgroundThe imbalance of commensal bacteria is called dysbiosis in intestinal microflora. Secreted IgA in the intestinal lumen plays an important role in the regulation of microbiota. Although dysbiosis of gut bacteria is reported in IBD patients, it remains unclear what makes dysbiosis of their microflora. The intervention method for remedy of dysbiosis in IBD patients is not well established. In this study, we focused on the quality of human endogenous IgA and investigated whether mouse monoclonal IgA which binds to selectively colitogenic bacteria can modulate human gut microbiota with IBD patients.MethodsIgA-bound and -unbound bacteria were sorted by MACS and cell sorter. Sorted bacteria were analyzed by 16S rRNA sequencing to investigate what kinds of bacteria endogenous IgA or mouse IgA recognized in human gut microbiota. To evaluate the effect of mouse IgA, gnotobiotic mice with IBD patient microbiota were orally administrated with mouse IgA and analyzed gut microbiota.ResultsWe show that human endogenous IgA has abnormal binding activity to gut bacteria in IBD patients. Mouse IgA can bind to human microbiota and bind to selectively colitogenic bacteria. The rW27, especially, has a growth inhibitory activity to human colitogenic bacteria. Furthermore, oral administration of mouse IgA reduced an inflammation biomarker, fecal lipocalin 2, in mice colonized with IBD patient-derived microbiota, and improved dysbiosis of IBD patient sample.ConclusionOral treatment of mouse IgA can treat gut dysbiosis in IBD patients by modulating gut microbiota.
Project description:Background and aimEnvironmental factors are associated with onset and course of inflammatory bowel disease (IBD). Our previous study by about 1,100 IBD patients revealed half of the patients experienced seasonal exacerbation of disease. We investigated the seasonality of fecal microbiota composition of IBD patients.MethodsFecal samples were consecutively collected in each season from IBD outpatients and healthy controls between November 2015 and April 2019. Participants who were treated with full elemental diet or antibiotics within 6 months or had ostomates were excluded. Bacterial profiles were analyzed by 16S rRNA sequencing, and the changes between the diseases and seasons were compared.ResultsA total of 188 fecal samples were analyzed from 47 participants comprising 19 Crohn's disease (CD) patients, 20 ulcerative colitis (UC) patients, and 8 healthy controls (HC). In CD patients, the phylum Actinobacteria and TM7 were both significantly more abundant in autumn than in spring and winter, but not in UC patients and HC. Moreover, the genera Actinomyces, a member of Actinobacteria, and c_TM7-3;o_;f_;g_ (TM7-3), that of TM7, were significantly more abundant in autumn than in spring, and the abundance of Actinomyces was significantly correlated with that of TM7-3 throughout the year in CD patients, but not in UC patients and HC. CD patients with high abundance of TM7-3 in the autumn required significantly fewer therapeutic intervention than those without seasonal fluctuation.ConclusionsOral commensals Actinomyces and its symbiont TM7-3 were correlatively fluctuated in the feces of CD patients by season, which could affect the disease course.
Project description:The gut microbiota plays an important role in the metabolization and modulation of several types of drugs. With this study we aimed to review the literature about microbial drug metabolism of medication prescribed in inflammatory bowel disease practice. A systematic literature search was performed in Embase and PubMed from inception to October 2019. The search was conducted with predefined MeSH/Emtree and text terms. All studies about drug metabolism by microbiota of medication prescribed in inflammatory bowel disease practice were eligible. A total of 1018 records were encountered and 89 articles were selected for full text reading. Intestinal bacterial metabolism or modulation is of influence in four specific drugs used in inflammatory bowel disease (mesalazines, methotrexate, glucocorticoids and thioguanine). The gut microbiota cleaves the azo-bond of sulfasalazine, balsalazide and olsalazine and releases the active moiety 5-aminosalicylic acid. It has an impact on the metabolization and potentially on the response of methotrexate therapy. Especially thioguanine can be converted by intestinal bacteria into the pharmacological active 6-thioguanine nucleotides without the requirement of host metabolism. Glucocorticoid compounds can be prone to bacterial degradation. The human intestinal microbiota can have a major impact on drug metabolism and efficacy of medication prescribed in inflammatory bowel disease practice. A better understanding of these interactions between microbiota and drugs is needed and should be an integral part of the drug development pathway of new inflammatory bowel disease medication.
Project description:BackgroundInflammatory bowel disease (IBD) involves dysregulation of mucosal immunity in response to environmental factors such as the gut microbiota. The bacterial microbiota is often altered in IBD, but the connection to disease is not fully clarified and gut fungi have recently been suggested to play a role as well. In this study, we compared microbes from all 3 domains of life-bacteria, archaea, and eukaryota-in pediatric patients with IBD and healthy controls.MethodsA stool sample was collected from patients with IBD (n = 32) or healthy control subjects (n = 90), and bacterial, archaeal, and fungal communities were characterized by deep sequencing of rRNA gene segments specific to each domain.ResultsPatients with IBD (Crohn's disease or ulcerative colitis) had lower bacterial diversity and distinctive fungal communities. Two lineages annotating as Candida were significantly more abundant in patients with IBD (P = 0.0034 and P = 0.00038, respectively), whereas a lineage annotating as Cladosporium was more abundant in healthy subjects (P = 0.0025). There were no statistically significant differences in archaea, which were rare in pediatric samples compared with those from adults.ConclusionsPediatric IBD is associated with reduced diversity in both fungal and bacterial gut microbiota. Specific Candida taxa were found to be increased in abundance in the IBD samples. These data emphasize the potential importance of fungal microbiota signatures as biomarkers of pediatric IBD, supporting their possible role in disease pathogenesis.
Project description:Inflammatory bowel disease (IBD) is a chronic, relapsing, inflammatory disorder which comprises two main conditions: Crohn's disease (CD) and ulcerative colitis (UC). Although the etiology of IBD has not been fully elucidated, the gut microbiota is hypothesized to play a vital role in its development. The aim of this cross-sectional study was to characterize the fecal microbiota in CD or UC patients in a state of remission to reveal potential factors sustaining residual levels of inflammation and triggering disease relapses. Ninety-eight IBD patients in a state of clinical remission (66 UC, 32 CD) and 97 controls were recruited, and stool samples, as well as detailed patient data, were collected. After DNA extraction, the variable regions V1 and V2 of the 16S rRNA gene were amplified and sequenced. Patients with IBD had a decrease in alpha diversity compared to that of healthy controls, and the beta diversity indices showed dissimilarity between the cohorts. Healthy controls were associated with the beneficial organisms unclassified Akkermansia species (Akkermansia uncl.), Oscillibacter uncl., and Coprococcus uncl., while flavonoid-degrading bacteria were associated with IBD. Network analysis identified highly central and influential disease markers and a strongly correlated network module of Enterobacteriaceae which was associated with IBD and could act as drivers for residual inflammatory processes sustaining and triggering IBD, even in a state of low disease activity. The microbiota in IBD patients is significantly different from that of healthy controls, even in a state of remission, which implicates the microbiota as an important driver of chronicity in IBD. IMPORTANCE Dysbiosis in inflammatory bowel disease (IBD) has been implicated as a causal or contributory factor to the pathogenesis of the disease. This study, done on patients in remission while accounting for various confounding factors, shows significant community differences and altered community dynamics, even after acute inflammation has subsided. A cluster of Enterobacteriaceae was linked with Crohn's disease, suggesting that this cluster, which contains members known to disrupt colonization resistance and form biofilms, persists during quiescence and can lead to chronic inflammation. Flavonoid-degrading bacteria were also associated with IBD, raising the possibility that modification of dietary flavonoids might induce and maintain remission in IBD.
Project description:Background and Aim: Accumulating evidence have implicated gut microbiota alterations in pediatric and adult patients with inflammatory bowel disease (IBD); however, the results of different studies are often inconsistent and even contradictory. It is believed that early changes in new-onset and treatment-naïve pediatric patients are more informative. We performed a systematic review to investigate the gut microbiota profiles in pediatric IBD and identify specific microbiota biomarkers associated with this disorder. Methods: Electronic databases were searched from inception to 31 July 2020 for studies that observed gut microbiota alterations in pediatric patients with IBD. Study quality was assessed using the Newcastle-Ottawa scale. Results: A total of 41 original studies investigating gut microbiota profiles in pediatric patients with IBD were included in this review. Several studies have reported a decrease in α-diversity and an overall difference in β-diversity. Although no specific gut microbiota alterations were consistently reported, a gain in Enterococcus and a significant decrease in Anaerostipes, Blautia, Coprococcus, Faecalibacterium, Roseburia, Ruminococcus, and Lachnospira were found in the majority of the included articles. Moreover, there is insufficient data to show specific microbiota bacteria associated with disease activity, location, and behavior in pediatric IBD. Conclusions: This systematic review identified evidence for differences in the abundance of some bacteria in pediatric patients with IBD when compared to patients without IBD; however, no clear overall conclusion could be drawn from the included studies due to inconsistent results and heterogeneous methodologies. Further studies with large samples that follow more rigorous and standardized methodologies are needed.
Project description:Inflammatory bowel disease (IBD) is characterized by disruptions in the gut microbiome. While most studies on gut dysbiosis in IBD rely on sequencing-based methods, we employed a streamlined culturomics approach to obtain a more comprehensive understanding of gut microbiota imbalance in patients with IBD that may not be captured by sequencing alone. A total of 367 bacteria were identified at the species level, including 211 species from ulcerative colitis patients, 164 species from Crohn's disease (CD) patients, and 263 species from healthy individuals. Consistent with our 16S rRNA gene amplicon sequencing results, a significant decrease in microbial diversity and a severe imbalance, especially in CD patients, were also observed in the culture-based analysis. Our culturomics approach provided additional insights, highlighting dysbiosis in unique anaerobic and Gram-negative species in CD patients. Moreover, species-level findings for Bifidobacterium and Enterobacterales emphasized specific species expansions in IBD patients. Notably, Mediterraneibacter gnavus, Thomasclavelia ramosa, Parabacteroides merdae, and Collinsella aerofaciens are of particular clinical interest due to their correlation with inflammatory biomarkers. This comprehensive analysis underscores the value of integrating a culture-based approach with a genome-based approach to provide complementary insights and therapeutic targets in IBD.
Project description:BackgroundIn patients with inflammatory bowel disease (IBD), Crohn's disease (CD), and ulcerative colitis (UC), numerous cases of exacerbations could be observed after colonoscopy, raising the possible pathogenetic effect of colonic microbiota alterations in IBD flare.ObjectivesWe aimed to investigate the changes in the fecal microbiota composition in IBD patients influenced by the bowel preparation with sodium picosulfate.DesignWe enrolled patients with IBD undergoing bowel preparation for colonoscopy in the prospective cohort study. The control group (Con) comprised non-IBD patients who underwent colonoscopy. Clinical data, blood, and stool samples were collected before colonoscopy (timepoint A), 3 days later (timepoint B), and 4 weeks later (timepoint C).MethodsDisease activity and gut microbiota changes were assessed at each timepoint. Fecal microbiota structure - at family level - was determined by sequencing the V4 region of the 16S rRNA gene. Statistical analysis included differential abundance analysis and Mann-Whitney tests.ResultsForty-one patients (9 CD, 13 UC, and 19 Con) were included. After bowel preparation, alpha diversity was lower in the CD group than in the UC (p = 0.01) and Con (p = 0.02) groups at timepoint B. Alpha diversity was significantly higher in the UC group than in the CD and Con (p = 0.03) groups at timepoint C. Beta diversity difference differed between the IBD and Con (p = 0.001) groups. Based on the differential abundance analysis, the Clostridiales family was increased, whereas the Bifidobacteriaceae family was decreased in CD patients compared to the Con at timepoint B.ConclusionsBowel preparation may change the fecal microbial composition in IBD patients, which may have a potential role in disease exacerbation after bowel cleansing.
Project description:Emerging evidence suggests that gut-brain-microbiota axis (GBMAx) may play a pivotal role linking gastrointestinal and neuronal disease. In this review, we summarize the latest advances in studies of GBMAx in inflammatory bowel disease (IBD) and ischemic stroke. A more thorough understanding of the GBMAx could advance our knowledge about the pathophysiology of IBD and ischemic stroke and help to identify novel therapeutic targets via modulation of the GBMAx.