Project description:RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear. Here, we study the interactions between RASSF1A, RASSF5, and MST2 SARAH domains by using both atomistic molecular simulation techniques and experiments. We construct and study models of MST2 homodimers and MST2-RASSF SARAH heterodimers, and we identify the factors that control their high molecular stability. In addition, we also analyze both computationally and experimentally the interactions of MST2 SARAH domains with a series of synthetic peptides particularly designed to bind to it, and hope that our approach can be used to address some of the challenging problems in designing new anti-cancer drugs.
Project description:The detailed, atomistic-level understanding of molecular signaling along the tumor-suppressive Hippo signaling pathway that controls tissue homeostasis by balancing cell proliferation and death through apoptosis is a promising avenue for the discovery of novel anticancer drug targets. The activation of kinases such as Mammalian STE20-Like Protein Kinases 1 and 2 (MST1 and MST2)-modulated through both homo- and heterodimerization (e.g. interactions with Ras association domain family, RASSF, enzymes)-is a key upstream event in this pathway and remains poorly understood. On the other hand, RASSFs (such as RASSF1A or RASSF5) act as important apoptosis activators and tumor suppressors, although their exact regulatory roles are also unclear. We present recent molecular studies of signaling along the Ras-RASSF-MST pathway, which controls growth and apoptosis in eukaryotic cells, including a variety of modern molecular modeling and simulation techniques. Using recently available structural information, we discuss the complex regulatory scenario according to which RASSFs perform dual signaling functions, either preventing or promoting MST2 activation, and thus control cell apoptosis. Here, we focus on recent studies highlighting the special role being played by the specific interactions between the helical Salvador/RASSF/Hippo (SARAH) domains of MST2 and RASSF1a or RASSF5 enzymes. These studies are crucial for integrating atomistic-level mechanistic information about the structures and conformational dynamics of interacting proteins, with information available on their system-level functions in cellular signaling.
Project description:De novo transcriptome assembly and comparative analysis of Metisa plana Walker (Lepidoptera: Psychidae) infestation in oil palm plantation exposed to different treatments.