Project description:Bimetal-organic frameworks (BMOFs) have attracted considerable attention as electrode materials for energy storage devices because of the precise control of their porous structure, surface area, and pore volume. BMOFs can promote multiple redox reactions because of the enhanced charge transfer between different metal ions. Therefore, the electroactivity of the electrodes can be significantly improved. Herein, we report a NiCo-MOF (NCMF) with a three-dimensional hierarchical nanorod-like structure prepared using a facile solvo-hydrothermal method. The as-prepared NCMF was used as the positive electrode in a hybrid pouch-type asymmetric supercapacitor device (HPASD) with a gel electrolyte (KOH+PVA) and activated carbon as the negative electrode. Because of the matchable potential windows and specific capacitances of the two electrodes, the assembled HPASD exhibits a specific capacitance of 161 F·g-1 at 0.5 A·g-1, an energy density of 50.3 Wh·kg-1 at a power density of 375 W·kg-1, and a cycling stability of 87.6% after 6000 cycles. The reported unique synthesis strategy is promising for producing high-energy-density electrode materials for supercapacitors.
Project description:Metal-organic frameworks (MOFs) are promising materials for biosensing applications due to their large surface to volume ratio, easy assembly as thin films, and better biocompatibility than other nanomaterials. Their application in electrochemical biosensing devices can be realized by integrating them with other conducting materials, like polyaniline (PANI). In the present research, a composite of a copper-MOF (i.e., Cu3(BTC)2) with PANI has been explored to develop an impedimetric sensor for cardiac marker troponin I (cTnI). The solvothermally synthesized Cu3(BTC)2/PANI composite has been coated as a thin layer on the screen-printed carbon electrodes (SPE). This electroconductive thin film was conjugated with anti-cTnI antibodies. The above formed immunosensor has allowed the impedimetric detection of cTnI antigen over a clinically important concentration range of 1-400 ng mL-1. The whole process of antigen analysis could be completed within 5 min. The detection method was specific to cTnI even in the co-presence of other possibly interfering proteins.
Project description:2D metal-organic frameworks (MOFs) are considered as promising electrochemical sensing materials and have attracted a lot of attention in recent years. Compared with bulk MOFs, the construction of 2D MOFs can increase the exposure of active sites by obtaining a larger surface area ratio. Herein, a facile one-pot hydrothermal synthesis of pyridine-regulated lamellar Ni-MOFs with ultrathin and well-defined 2D morphology is described. Compared with the bulk structure, the 2D lamellar Ni-MOF has higher surface area and active site density, showing better electrochemical glucose sensing performance. The 2D lamellar Ni-MOF exhibits a fast amperometric response of less than 3 s and a high sensitivity of 907.54 µA mm-1 cm-2 toward glucose with a wide linear range of 0.5-2665.5 µm. Furthermore, the 2D lamellar Ni-MOF also possesses excellent stability and reproducibility, and can be used to detect glucose with high accuracy and reliability in different environments.
Project description:With increasingly severe air pollution brought by volatile organic compounds (VOCs), the search for efficient adsorbents toward VOC removal is of great significance. Herein, an adenine-based metal-organic framework, namely, bio-MOF-11 [Co2(ad)2(CH3CO2)2·0.3EtOH·0.6H2O, ad = adeninate], was synthesized via a facile method, and its VOC adsorption was reported for the first time. This novel bio-MOF-11 was investigated by employing four common VOCs (i.e., methanol, acetone, benzene, and toluene) as adsorbates. The saturated adsorption capacity of these targeted VOCs on bio-MOF-11 was estimated to be 0.73-3.57 mmol/g, following the order: toluene < benzene < acetone < methanol. Furthermore, with the adsorption temperature increasing from 288 to 308 K, the saturated adsorption capacity was reduced by 7.3-35.6%. It is worth noting that acetone adsorption is most sensitive to temperature ascribed to its low boiling point and strong polar nature. Meanwhile, owing to the molecular sieve effect, the adsorption capacity appears negatively correlated to the size of VOC molecules. Besides, the abundant exposed nitrogen atoms and amino groups in bio-MOF-11 cavities facilitate the adsorption of polar VOC molecules. This work promotes the fundamental understanding and practical application of bio-MOF for adsorptive removal of VOCs.
Project description:Green energy transition has supposed to give a huge boost to the electric vehicle rechargeable battery market. This has generated a compelling demand for raw materials, such as cobalt and nickel, which are key common constituents in lithium-ion batteries (LIBs). However, their existing mining protocols and the concentrated localization of such ores have made cobalt and nickel mineral conundrums, and their supplies experience shortages, which threaten to slow the progress of the renewable energy transition. Aiming to contribute to the sustainable recycling of these valuable metals from LIBs and wastewater, in this work, we explore the use of four mixed matrix membranes (MMMs) embedding different metal-organic frameworks (MOFs), i.e., MIL-53(Al), MIL-53(Fe), MIL-101(Fe), and {SrIICuII 6[(S,S)-serimox]3(OH)2(H2O)}·39H2O (SrCu 6 Ser) in polyether sulfone (PES), for the recovery of cobalt(II) and nickel(II) metal cations from mixed cobalt-nickel aqueous solutions containing common interfering ions. Whereas the neat PES membrane slightly contributes to the adsorption of metal ions, showing reduced removal efficiency values of 10.2 and 9.5% for Ni(II) and Co(II), respectively, the inclusion of MOFs in the polymeric matrix substantially improves the adsorption performances. The four MOF@PES MMMs efficiently remove these metals from water, with MIL-53(Al)@PES being the one that presents better performance, with a removal efficiency up to 95% of Ni(II) and Co(II). Remarkably, SrCu 6 Ser@PES exhibits outstanding selectivity toward cobalt(II) cations compared to of nickel(II) ones, with removal efficiencies of 63.7 and 15.1% for Co(II) and Ni(II), respectively. Overall, the remarkable efficiencies, versatility, high environmental robustness, and cost-effective synthesis shown by this family of MOF@PES MMMs situate them among the best adsorbents for the extraction of this kind of contaminants.
Project description:Exerting morphological control over metal-organic frameworks (MOFs) is critical for determining their catalytic performance and to optimize their packing behavior in areas from separations to fuel gas storage. A mechanism-based approach to tailor the morphology of MOFs is introduced and experimentally demonstrated for five cubic Zn4 O-based MOFs. This methodology provides three key features: 1) computational screening for selection of appropriate additives to change crystal morphology based on knowledge of the crystal structure alone; 2) use of additive to metal cluster geometric relationships to achieve morphologies expressing desired crystallographic facets; 3) potential for suppression of interpenetration for certain phases.
Project description:Isostructural MOFs with similar crystallographic parameter are easily available for MOF-on-MOF growth and possible to form core-shell structure by isotropic growth. However, due to well-matched cell lattice, selective growth in isostructural MOF heterostructures remains a great challenge for engineering atypical MOF heterostructures. Herein, an anisotropic MOF-on-MOF growth strategy was developed to structure a range of multilayer sandwich-like ZIF-L heterostructures via stacking isostructural ZIF-L-Zn and ZIF-L-Co alternately with three-, five-, seven-, and more layer structures. Moreover, these heterostructures with highly designable feature were fantastic precursors for fabricating derivatives with tunable magnetic and catalytic properties. Such strategy explores a novel way of achieving anisotropic MOF-on-MOF growth between isostructural MOFs and opens up new horizons for regulating the properties by MOF modular assembly in versatile functional nanocomposites.
Project description:A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m(2) g(-1)), excellent magnetic response (14.89 emu g(-1)), and large mesopore volume (0.09 cm(3) g(-1)), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π-π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g(-1) at an initial MB concentration of 30 mg L(-1), which increased to 245 mg g(-1) when the initial MB concentration was 300 mg L(-1). This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles.
Project description:We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs.