Project description:The most commonly used method to assess peripheral oxygen saturation (SpO2) in clinical practice is pulse oximetry. The smartwatch Apple Watch 6 was developed with a new sensor and an app that allows taking on-demand readings of blood oxygen and background readings, day and night. The present study aimed to assess the feasibility and agreement of the Apple Watch 6 compared with a standard SpO2 monitoring system to assess normal and pathological oxygen saturation. We recruited study participants with lung disease or cardiovascular disease and healthy subjects. A total of 265 subjects were screened for enrolment in this study. We observed a strong positive correlation between the smartwatch and the standard commercial device in the evaluation of SpO2 measurements (r = 0.89, p < 0.0001) and HR measurements (r = 0.98, p < 0.0001). A very good concordance was found between SpO2 (bias, -0.2289; SD, 1.66; lower limit, -3.49; and upper limit, 3.04) and HR (bias, -0.1052; SD, 2.93; lower limit, -5.84; and upper limit, 5.63) measured by the smartwatch in comparison with the standard commercial device using Bland-Altman analysis. We observed similar agreements and concordance even in the different subgroups. In conclusion, our study demonstrates that the wearable device used in the present study could be used to assess SpO2 in patients with cardiovascular or lung diseases and in healthy subjects.
Project description:The reliability of pulse oximetry is crucial, especially in cases of rapid changes in body oxygenation. In order to evaluate the performance of pulse oximeters during rapidly developing short periods of concurrent hypoxemia and hypercapnia, 13 healthy volunteers underwent 3 breathing phases during outdoor experiments (39 phases in total), monitored simultaneously by five different pulse oximeters. A significant incongruity in values displayed by the tested pulse oximeters was observed, even when the accuracy declared by the manufacturers were considered. In 28.2% of breathing phases, the five used devices did not show any congruent values. The longest uninterrupted congruent period formed 74.4% of total recorded time. Moreover, the congruent periods were rarely observed during the critical desaturation phase of the experiment. The time difference between the moments when the first and the last pulse oximeter showed the typical study endpoint values of SpO2 85% and 75% was 32.1 ± 23.6 s and 24.7 ± 19.3 s, respectively. These results suggest that SpO2 might not be a reliable parameter as a study endpoint, or more importantly as a safety limit in outdoor experiments. In the design of future studies, more parameters and continuous clinical assessment should be included.
Project description:ObjectivePulse oximetry is commonly used in Neonatology, however recent adult data suggest racial disparity in accuracy, with overestimation of oxygen saturation for Black patients.Study designBlack and White infants <32 weeks gestation underwent simultaneous arterial blood gas and pulse oximetry measurement. Error by race was examined using mean bias, Arms, Bland-Altman, and linear/non-linear analysis.ResultsA total of 294 infants (124 Black, 170 White) were identified with mean GA of 25.8 ± 2.1 weeks and mean BW of 845 ± 265 grams, yielding 4387 SaO2-SpO2 datapoints. SpO2 overestimation, measured by mean bias, was 2.4-fold greater for Black infants and resulted in greater occult hypoxemia (SpO2 > 90% when SaO2 < 85%; 9.2% vs. 7.7% of samples). Sensitivity and specificity for detection of true hypoxemia were similar between groups (39 vs. 38%; 81 vs. 78%).ConclusionThere is a modest but consistent difference in SpO2 error between Black and White infants, with increased incidence of occult hypoxemia in Black infants.
Project description:ObjectiveTo assess the performance of reusable pulse oximeter probe and microprocessor box combinations, of varying price-points, in the context of a low-income pediatric setting.MethodsA prospective, randomized cross-over study comparing time to biologically plausible oxygen saturation (SpO2 ) between: (1) Lifebox LB-01 probe with Masimo Rad-87 box (L + M) and (2) a weight-appropriate reusable Masimo probe with Masimo Rad-87 box (M + M). A post hoc secondary analysis comparison with historical usability testing data with the Lifebox LB-01 probe and Lifebox V1.5 box (L + L) was also conducted. Participants, children aged 0 to 35 months, were recruited from pediatric wards and outpatient clinics in the central region of Malawi. The primary outcome was time taken to achieve a biologically plausible SpO 2 measurement, compared using t tests for equivalence.ResultsWe recruited 572 children. Plausible SpO2 measurements were obtained in less than 1 minute, 71%, 70%, and 63% for the M + M, L + M, and L + L combinations, respectively. A similar pattern was seen for less than 2 minutes, however, this effect disappeared at less than 5 minutes with 96%, 96%, and 95% plausible measurements. Using a ±10 second threshold for equivalence, we found L + M and M + M to be equivalent, but were under-powered to assess equivalence for L + L.ConclusionsThe novel reusable pediatric Lifebox probe can achieve a quality SpO2 measurement within a pragmatic time range of weight-appropriate Masimo equivalent probes. Further research, which considers the cost of the devices, is needed to assess the added value of sophisticated motion tolerance software.
Project description:ObjectiveDo newborns, children and adolescents up to 19 years have lower mortality rates, lower morbidity and shorter length of stay in health facilities where pulse oximeters are used to inform diagnosis and treatment (excluding surgical care) compared with health facilities where pulse oximeters are not used?DesignStudies were obtained for this systematic literature review by systematically searching the Database of Abstracts of Reviews of Effects, Cochrane, Medion, PubMed, Web of Science, Embase, Global Health, CINAHL, WHO Global Health Library, international health organisation and NGO websites, and study references.PatientsChildren 0-19 years presenting for the first time to hospitals, emergency departments or primary care facilities.InterventionsIncluded studies compared outcomes where pulse oximeters were used for diagnosis and/or management, with outcomes where pulse oximeters were not used.Main outcome measuresmortality, morbidity, length of stay, and treatment and management changes.ResultsThe evidence is low quality and hypoxaemia definitions varied across studies, but the evidence suggests pulse oximeter use with children can reduce mortality rates (when combined with improved oxygen administration) and length of emergency department stay, increase admission of children with previously unrecognised hypoxaemia, and change physicians' decisions on illness severity, diagnosis and treatment. Pulse oximeter use generally increased resource utilisation.ConclusionsAs international organisations are investing in programmes to increase pulse oximeter use in low-income settings, more research is needed on the optimal use of pulse oximeters (eg, appropriate oxygen saturation thresholds), and how pulse oximeter use affects referral and admission rates, length of stay, resource utilisation and health outcomes.
Project description:BackgroundFluid overload is associated with morbidity and mortality in children receiving dialysis. Accurate clinical assessment is difficult, and using deuterium oxide (D2O) to measure total body water (TBW) is impractical. We investigated the use of ultrasound (US), bioimpedance spectroscopy (BIS), and anthropometry to assess fluid removal in children receiving maintenance hemodialysis (HD).MethodsParticipants completed US, BIS, and anthropometry immediately before and 1-2 h after HD for up to five sessions. US measured inferior vena cava (IVC) diameter, lung B-lines, muscle elastography, and dermal thickness. BIS measured the volume of extracellular (ECF) and intracellular (ICF) fluid. Anthropometry included mid-upper arm, calf and ankle circumferences, and triceps skinfold thickness. D2O was performed once pre-HD. We assessed the change in study measures pre- versus post-HD, and the correlation of change in study measures with percent change in body weight (%∆BW). We also assessed the agreement between TBW measured by BIS and D2O.ResultsEight participants aged 3.4-18.5 years were enrolled. Comparison of pre- and post-HD measures showed significant decrease in IVC diameters, lung B-lines, dermal thickness, BIS %ECF, mid-upper arm circumference, ankle, and calf circumference. Repeated measures correlation showed significant relationships between %∆BW and changes in BIS ECF (rrm =0.51, 95% CI 0.04, 0.80) and calf circumference (rrm=0.80, 95% CI 0.51, 0.92). BIS TBW correlated with D2O TBW but overestimated TBW by 2.2 L (95% LOA, -4.75 to 0.42).ConclusionBIS and calf circumference may be helpful to assess changes in fluid status in children receiving maintenance HD. IVC diameter, lung B-lines and dermal thickness are potential candidates for future studies.
Project description:Background: The success of many machine learning applications depends on knowledge about the relationship between the input data and the task of interest (output), hindering the application of machine learning to novel tasks. End-to-end deep learning, which does not require intermediate feature engineering, has been recommended to overcome this challenge but end-to-end deep learning models require large labelled training data sets often unavailable in many medical applications. In this study, we trained self-supervised learning (SSL) models for automatic feature extraction from raw photoplethysmography (PPG) obtained using a pulse oximeter, with the aim of predicting paediatric hospitalization. Methods: We compared logistic regression models fitted using features extracted using SSL with models trained using both clinical and SSL features. In addition, we compared end-to-end deep learning models initialized randomly or using weights from the SSL models. We also compared the performance of SSL models trained on labelled data alone (n=1,031) with SSL trained using both labelled and unlabelled signals (n=7,578). Results: Logistic regression models were more predictive of hospitalization when trained on features extracted using labelled PPG signals only compared to SSL models trained on both labelled and unlabelled signals (AUC 0.83 vs 0.80). However, features extracted using SSL model trained on both labelled and unlabelled PPG signals were more predictive of hospitalization when concatenated with clinical features (AUC 0.89 vs 0.87). The end-to-end deep learning model had an AUC of 0.80 when initialized using the SSL model trained on all PPG signals, 0.77 when initialized using SSL trained on labelled data only, and 0.73 when initialized randomly. Conclusions: This study shows that SSL can extract features from PPG signals that are predictive of hospitalization or initialize end-to-end deep learning models. Furthermore, SSL can leverage larger unlabelled data sets to improve performance of models fitted using small labelled data sets.
Project description:BackgroundMonitoring blood oxygenation is essential in immobilised rhinoceros, which are susceptible to opioid-induced hypoxaemia. This study assessed the reliability, clinical performance and trending ability of the Nonin PalmSAT 2500 A pulse oximeter's and the Masimo Radical-7 pulse co-oximeter's dual-wavelength technology, with their probes placed at two measurement sites, the inner surface of the third-eyelid and the scarified ear pinna of immobilised white rhinoceroses. Eight white rhinoceros were immobilised with etorphine-based drug combinations and given butorphanol after 12 min, and oxygen after 40 min, of recumbency. The Nonin and Masimo devices, with dual-wavelength probes attached to the third-eyelid and ear recorded arterial peripheral oxygen-haemoglobin saturation (SpO2) at pre-determined time points, concurrently with measurements of arterial oxygen-haemoglobin saturation (SaO2), from drawn blood samples, by a benchtop AVOXimeter 4000 co-oximeter (reference method). Reliability of the Nonin and Masimo devices was evaluated using the Bland-Altman and the area root mean squares (ARMS) methods. Clinical performance of the devices was evaluated for their ability to accurately detect clinical hypoxemia using receiver operating characteristic (ROC) curves and measures of sensitivity, specificity, and positive and negative predictive values. Trending ability of the devices was assessed by calculating concordance rates from four-quadrant plots.ResultsOnly the Nonin device with transflectance probe attached to the third-eyelid provided reliable SpO2 measurements across the 70 to 100% saturation range (bias - 1%, precision 4%, ARMS 4%). Nonin and Masimo devices with transflectance probes attached to the third-eyelid both had high clinical performance at detecting clinical hypoxaemia [area under the ROC curves (AUC): 0.93 and 0.90, respectively]. However, the Nonin and Masimo devices with transmission probes attached to the ear were unreliable and provided only moderate clinical performance. Both Nonin and Masimo devices, at both measurement sites, had concordance rates lower than the recommended threshold of ≥ 90%, indicating poor trending ability.ConclusionsThe overall assessment of reliability, clinical performance and trending ability indicate that the Nonin device with transflectance probe attached to the third-eyelid is best suited for monitoring of blood oxygenation in immobilised rhinoceros. The immobilisation procedure may have affected cardiovascular function to an extent that it limited the devices' performance.
Project description:BackgroundA decrease in the level of pulse oxygen saturation as measured by pulse oximetry (SpO2) is an indicator of hypoxemia that may occur in various respiratory diseases, such as chronic obstructive pulmonary disease (COPD), sleep apnea syndrome, and COVID-19. Currently, no mass-market wrist-worn SpO2 monitor meets the medical standards for pulse oximeters.ObjectiveThe main objective of this monocentric and prospective clinical study with single-blind analysis was to test and validate the accuracy of the reflective pulse oximeter function of the Withings ScanWatch to measure SpO2 levels at different stages of hypoxia. The secondary objective was to confirm the safety of this device when used as intended.MethodsTo achieve these objectives, we included 14 healthy participants aged 23-39 years in the study, and we induced several stable plateaus of arterial oxygen saturation (SaO2) ranging from 100%-70% to mimic nonhypoxic conditions and then mild, moderate, and severe hypoxic conditions. We measured the SpO2 level with a Withings ScanWatch on each participant's wrist and the SaO2 from blood samples with a co-oximeter, the ABL90 hemoximeter (Radiometer Medical ApS).ResultsAfter removal of the inconclusive measurements, we obtained 275 and 244 conclusive measurements with the two ScanWatches on the participants' right and left wrists, respectively, evenly distributed among the 3 predetermined SpO2 groups: SpO2≤80%, 80%<SpO2≤90%, and 90%<SpO2. We found a strong association and a high level of agreement between the measurements collected from the devices, with high Pearson correlation coefficients of r=0.944 and r=0.954 on the correlation plots, low Pearson correlation coefficients of r=0.083 (P=.17) and r=0.23 (P=.001) on Bland-Altman plots, biases of 0.98% (95% CI 0.65-1.32) and 1.56% (95% CI 1.24-1.87), and root mean square errors of 2.97% and 3.00% from the participants' right and left hands, respectively.ConclusionsIn conclusion, the Withings ScanWatch is able to measure SpO2 levels with adequate accuracy at a clinical grade. No undesirable effects or adverse events were reported during the study.Trial registrationClinicalTrials.gov NCT04380389; http://clinicaltrials.gov/ct2/show/NCT04380389.