Project description:The reliability of pulse oximetry is crucial, especially in cases of rapid changes in body oxygenation. In order to evaluate the performance of pulse oximeters during rapidly developing short periods of concurrent hypoxemia and hypercapnia, 13 healthy volunteers underwent 3 breathing phases during outdoor experiments (39 phases in total), monitored simultaneously by five different pulse oximeters. A significant incongruity in values displayed by the tested pulse oximeters was observed, even when the accuracy declared by the manufacturers were considered. In 28.2% of breathing phases, the five used devices did not show any congruent values. The longest uninterrupted congruent period formed 74.4% of total recorded time. Moreover, the congruent periods were rarely observed during the critical desaturation phase of the experiment. The time difference between the moments when the first and the last pulse oximeter showed the typical study endpoint values of SpO2 85% and 75% was 32.1 ± 23.6 s and 24.7 ± 19.3 s, respectively. These results suggest that SpO2 might not be a reliable parameter as a study endpoint, or more importantly as a safety limit in outdoor experiments. In the design of future studies, more parameters and continuous clinical assessment should be included.
Project description:ObjectiveTo assess the performance of reusable pulse oximeter probe and microprocessor box combinations, of varying price-points, in the context of a low-income pediatric setting.MethodsA prospective, randomized cross-over study comparing time to biologically plausible oxygen saturation (SpO2 ) between: (1) Lifebox LB-01 probe with Masimo Rad-87 box (L + M) and (2) a weight-appropriate reusable Masimo probe with Masimo Rad-87 box (M + M). A post hoc secondary analysis comparison with historical usability testing data with the Lifebox LB-01 probe and Lifebox V1.5 box (L + L) was also conducted. Participants, children aged 0 to 35 months, were recruited from pediatric wards and outpatient clinics in the central region of Malawi. The primary outcome was time taken to achieve a biologically plausible SpO 2 measurement, compared using t tests for equivalence.ResultsWe recruited 572 children. Plausible SpO2 measurements were obtained in less than 1 minute, 71%, 70%, and 63% for the M + M, L + M, and L + L combinations, respectively. A similar pattern was seen for less than 2 minutes, however, this effect disappeared at less than 5 minutes with 96%, 96%, and 95% plausible measurements. Using a ±10 second threshold for equivalence, we found L + M and M + M to be equivalent, but were under-powered to assess equivalence for L + L.ConclusionsThe novel reusable pediatric Lifebox probe can achieve a quality SpO2 measurement within a pragmatic time range of weight-appropriate Masimo equivalent probes. Further research, which considers the cost of the devices, is needed to assess the added value of sophisticated motion tolerance software.
Project description:ObjectivePulse oximetry is commonly used in Neonatology, however recent adult data suggest racial disparity in accuracy, with overestimation of oxygen saturation for Black patients.Study designBlack and White infants <32 weeks gestation underwent simultaneous arterial blood gas and pulse oximetry measurement. Error by race was examined using mean bias, Arms, Bland-Altman, and linear/non-linear analysis.ResultsA total of 294 infants (124 Black, 170 White) were identified with mean GA of 25.8 ± 2.1 weeks and mean BW of 845 ± 265 grams, yielding 4387 SaO2-SpO2 datapoints. SpO2 overestimation, measured by mean bias, was 2.4-fold greater for Black infants and resulted in greater occult hypoxemia (SpO2 > 90% when SaO2 < 85%; 9.2% vs. 7.7% of samples). Sensitivity and specificity for detection of true hypoxemia were similar between groups (39 vs. 38%; 81 vs. 78%).ConclusionThere is a modest but consistent difference in SpO2 error between Black and White infants, with increased incidence of occult hypoxemia in Black infants.
Project description:ObjectiveDo newborns, children and adolescents up to 19 years have lower mortality rates, lower morbidity and shorter length of stay in health facilities where pulse oximeters are used to inform diagnosis and treatment (excluding surgical care) compared with health facilities where pulse oximeters are not used?DesignStudies were obtained for this systematic literature review by systematically searching the Database of Abstracts of Reviews of Effects, Cochrane, Medion, PubMed, Web of Science, Embase, Global Health, CINAHL, WHO Global Health Library, international health organisation and NGO websites, and study references.PatientsChildren 0-19 years presenting for the first time to hospitals, emergency departments or primary care facilities.InterventionsIncluded studies compared outcomes where pulse oximeters were used for diagnosis and/or management, with outcomes where pulse oximeters were not used.Main outcome measuresmortality, morbidity, length of stay, and treatment and management changes.ResultsThe evidence is low quality and hypoxaemia definitions varied across studies, but the evidence suggests pulse oximeter use with children can reduce mortality rates (when combined with improved oxygen administration) and length of emergency department stay, increase admission of children with previously unrecognised hypoxaemia, and change physicians' decisions on illness severity, diagnosis and treatment. Pulse oximeter use generally increased resource utilisation.ConclusionsAs international organisations are investing in programmes to increase pulse oximeter use in low-income settings, more research is needed on the optimal use of pulse oximeters (eg, appropriate oxygen saturation thresholds), and how pulse oximeter use affects referral and admission rates, length of stay, resource utilisation and health outcomes.
Project description:ObjectivesCapillary refill time is a noninvasive method to assess tissue perfusion to determine shock status. Capillary refill time is defined as the time required to regain skin color after blanching pressure is applied. Although common methods to measure capillary refill time depend on clinicians' visual assessment, a new approach using a pulse oximeter waveform analysis exists, referred to as full finger reperfusion time. We aim to evaluate reproducibility and validity of the novel full finger reperfusion time measurement using clinicians' visual capillary refill time assessment as a reference standard.DesignProspective observational study.SettingPICUs and operating suites at a large academic children's hospital.PatientsNinety-nine children 1-12 years old with various skin color tones.InterventionsEach child had 10 measurements, including five full finger reperfusion time and five clinician capillary refill time, alternating second and third digits.Measurements and main resultsEighteen children had prolonged capillary refill time (> 2 s) and four children with capillary refill time greater than 3 seconds. Four-hundred eighty-five data pairs were analyzed. Intraclass correlation coefficient of full finger reperfusion time within each patient was 0.76 (95% CI, 0.68-0.83), demonstrating good reproducibility. Correlation coefficient between full finger reperfusion time and clinician capillary refill time was moderate: r = 0.37 (p < 0.0001; 95% CI, 0.29-0.44) for the pairs and r = 0.52 (p < 0.0001; 95% CI, 0.36-0.65) for patient average. Bland-Altman plot showed a consistent difference between full finger reperfusion time and clinician capillary refill time (full finger reperfusion time 1.14 s longer). Weak association was found between force and full finger reperfusion time (β = -0.033 ± 0.016; 95% CI, -0.065 to -0.0016; p = 0.04), finger thickness (β = -0.20 ± 0.089; 95% CI, -0.37 to -0.19; p = 0.03), except for color tone (p = 0.31). Finger temperature was associated with full finger reperfusion time (β = -0.18 ± 0.041; 95% CI, -0.26 to -0.0999; p < 0.0001).ConclusionsFull finger reperfusion time demonstrated good reproducibility. Full finger reperfusion time showed moderate correlation with clinician capillary refill time. Full finger reperfusion time was 1.14 seconds longer than capillary refill time. Future studies should focus on the clinical value of full finger reperfusion time as a monitoring device for hemodynamics in critically ill children.
Project description:Current oxygen delivery modes lack monitoring and can be cumbersome for patients with chronic respiratory diseases. Integrating a pulse oximeter and nasal oxygen cannulas into eyeglasses would reduce the burden of current solutions. An ear pulse oximeter (OxyFrame) was evaluated on 16 healthy volunteers and 20 hypoxemic patients with chronic respiratory diseases undergoing a prespecified protocol simulating daily activities. Correlation, error, and accuracy root mean square error (ARMS) were calculated to compare SpO2 measured by OxyFrame, a standard pulse oximeter (MASIMO), and arterial blood gas analysis (aBGA). SpO2 measured by OxyFrame and MASIMO correlated strongly in volunteers, with low error and high accuracy (r = 0.85, error = 0.2 ± 2.9%, ARMS = 2.88%). Performances were similar in patients (r = 0.87, error 0 ± 2.5%, ARMS = 2.49% compared with MASIMO; and r = 0.93, error = 0.4 ± 1.9%, ARMS = 1.94% compared with aBGA). However, the percentage of rejected measurements was high (volunteers 77.2%, patients 46.9%). The OxyFrame cavum conchae pulse oximeter was successfully evaluated, and demonstrated accurate SpO2 measurements, compliant with ISO 80601-2-61:2017. Several reasons for the high rejection rate were identified, and potential solutions were proposed, which might be valuable for optimization of the sensor hardware.
Project description:BackgroundA decrease in the level of pulse oxygen saturation as measured by pulse oximetry (SpO2) is an indicator of hypoxemia that may occur in various respiratory diseases, such as chronic obstructive pulmonary disease (COPD), sleep apnea syndrome, and COVID-19. Currently, no mass-market wrist-worn SpO2 monitor meets the medical standards for pulse oximeters.ObjectiveThe main objective of this monocentric and prospective clinical study with single-blind analysis was to test and validate the accuracy of the reflective pulse oximeter function of the Withings ScanWatch to measure SpO2 levels at different stages of hypoxia. The secondary objective was to confirm the safety of this device when used as intended.MethodsTo achieve these objectives, we included 14 healthy participants aged 23-39 years in the study, and we induced several stable plateaus of arterial oxygen saturation (SaO2) ranging from 100%-70% to mimic nonhypoxic conditions and then mild, moderate, and severe hypoxic conditions. We measured the SpO2 level with a Withings ScanWatch on each participant's wrist and the SaO2 from blood samples with a co-oximeter, the ABL90 hemoximeter (Radiometer Medical ApS).ResultsAfter removal of the inconclusive measurements, we obtained 275 and 244 conclusive measurements with the two ScanWatches on the participants' right and left wrists, respectively, evenly distributed among the 3 predetermined SpO2 groups: SpO2≤80%, 80%<SpO2≤90%, and 90%<SpO2. We found a strong association and a high level of agreement between the measurements collected from the devices, with high Pearson correlation coefficients of r=0.944 and r=0.954 on the correlation plots, low Pearson correlation coefficients of r=0.083 (P=.17) and r=0.23 (P=.001) on Bland-Altman plots, biases of 0.98% (95% CI 0.65-1.32) and 1.56% (95% CI 1.24-1.87), and root mean square errors of 2.97% and 3.00% from the participants' right and left hands, respectively.ConclusionsIn conclusion, the Withings ScanWatch is able to measure SpO2 levels with adequate accuracy at a clinical grade. No undesirable effects or adverse events were reported during the study.Trial registrationClinicalTrials.gov NCT04380389; http://clinicaltrials.gov/ct2/show/NCT04380389.
Project description:BackgroundThe objective of this study was to test the effect of removal of a ureteral obstruction (renal calculus) from anesthetized patients on the perfusion index (PI), as measured by a pulse oximeter, and on the estimated glomerular filtration rate (eGFR).Patients and methodsThis prospective study enrolled 113 patients with unilateral ureteral obstructions (kidney stones) who were scheduled for ureteroscopy (URS) laser lithotripsy. One urologist graded patient hydronephrosis before surgery. A pulse oximeter was affixed to each patient's index finger ipsilateral to the intravenous catheter, and a non-invasive blood pressure cuff was placed on the contralateral side. Ipsilateral double J stents and Foley catheters were inserted and left indwelling for 24 h. PI and mean arterial pressure (MAP) were determined at baseline, 5 min after anesthesia, and 10 min after surgery; eGFR was determined at admission, 1 day after surgery, and 14 days after surgery.ResultsPatients with different grades of hydronephrosis had similar age, eGFR, PI, mean arterial pressure (MAP), and heart rate (HR). PI increased significantly in each hydronephrosis group after ureteral stone disintegration. None of the groups had significant post-URS changes in eGFR, although eGFR increased in the grade I hydronephrosis group after 14 days. The percent change of PI correlates significantly with the percent change of MAP, but not with that of eGFR.ConclusionOur results demonstrate that release of a ureteral obstruction leads to a concurrent increase of PI during anesthesia. Measurement of PI may be a valuable tool to monitor the successful release of ureteral obstructions and changes of microcirculation during surgery. There were also increases in eGFR after 14 days, but not immediately after surgery.
Project description:Hypoxemia measured by pulse oximetry predicts child pneumonia mortality in low-resource settings (LRS). Existing pediatric oximeter probes are prohibitively expensive and/or difficult to use, limiting LRS implementation. Using a human-centered design, we developed a low-cost, reusable pediatric oximeter probe for LRS health-care workers (HCWs). Here, we report probe usability testing. Fifty-one HCWs from Malawi, Bangladesh, and the United Kingdom participated, and seven experts provided reference measurements. Health-care workers and experts measured the peripheral arterial oxyhemoglobin saturation (SpO2) independently in < 5 year olds. Health-care worker measurements were classed as successful if recorded in 5 minutes (or shorter) and physiologically appropriate for the child, using expert measurements as the reference. All expert measurements were considered successful if obtained in < 5 minutes. We analyzed the proportion of successful SpO2 measurements obtained in < 1, < 2, and < 5 minutes and used multivariable logistic regression to predict < 1 minute successful measurements. We conducted four testing rounds with probe modifications between rounds, and obtained 1,307 SpO2 readings. Overall, 67% (876) of measurements were successful and achieved in < 1 minute, 81% (1,059) < 2 minutes, and 90% (1,181) < 5 minutes. Compared with neonates, increasing age (infant adjusted odds ratio [aOR]; 1.87, 95% confidence interval [CI]: 1.16, 3.02; toddler aOR: 4.33, 95% CI: 2.36, 7.97; child aOR; 3.90, 95% CI: 1.73, 8.81) and being asleep versus being calm (aOR; 3.53, 95% CI: 1.89, 6.58), were associated with < 1 minute successful measurements. In conclusion, we designed a novel, reusable pediatric oximetry probe that was effectively used by LRS HCWs on children. This probe may be suitable for LRS implementation.
Project description:Telomerase is a ribonucleoprotein enzyme that adds telomeric DNA repeat sequences to the ends of linear chromosomes. The enzyme plays pivotal roles in cellular senescence and aging, and because it provides a telomere maintenance mechanism for approximately 90% of human cancers, it is a promising target for cancer therapy. Despite its importance, a high-resolution structure of the telomerase enzyme has been elusive, although a crystal structure of an N-terminal domain (TEN) of the telomerase reverse transcriptase subunit (TERT) from Tetrahymena has been reported. In this study, we used a comparative strategy, in which sequence-based machine learning approaches were integrated with computational structural modeling, to explore the potential conservation of structural and functional features of TERT in phylogenetically diverse species. We generated structural models of the N-terminal domains from human and yeast TERT using a combination of threading and homology modeling with the Tetrahymena TEN structure as a template. Comparative analysis of predicted and experimentally verified DNA and RNA binding residues, in the context of these structures, revealed significant similarities in nucleic acid binding surfaces of Tetrahymena and human TEN domains. In addition, the combined evidence from machine learning and structural modeling identified several specific amino acids that are likely to play a role in binding DNA or RNA, but for which no experimental evidence is currently available.