Project description:Sex-specific phenotypic differences are widespread throughout the animal kingdom. Reproductive advantages provided by trait differences come at a cost. Here, we link sex-specific foraging strategies to trade-offs between foraging reward and mortality risk in sexually dimorphic northern elephant seals (Mirounga angustirostris). We analyse a decadal dataset on movement patterns, dive behaviour, foraging success and mortality rates. Females are deep-diving predators in open ocean habitats. Males are shallow-diving benthic predators in continental shelf habitats. Males gain six times more mass and acquire energy 4.1 times faster than females. High foraging success comes with a high mortality rate. Males are six times more likely to die than females. These foraging strategies and trade-offs are related to different energy demands and life-history strategies. Males use a foraging strategy with a high mortality risk to attain large body sizes necessary to compete for females, as only a fraction of the largest males ever mate. Females use a foraging strategy with a lower mortality risk, maximizing reproductive success by pupping annually over a long lifespan. Our results highlight how sex-specific traits can drive disparity in mortality rates and expand species' niche space. Further, trade-offs between foraging rewards and mortality risk can differentially affect each sex's ability to maximize fitness.
Project description:Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as exploratory tools which can advance our understanding of the mechanisms underlying the trade-offs and synergies of ecological and economic functions in tropical landscapes.
Project description:Land-use transitions can enhance the livelihoods of smallholder farmers but potential economic-ecological trade-offs remain poorly understood. Here, we present an interdisciplinary study of the environmental, social and economic consequences of land-use transitions in a tropical smallholder landscape on Sumatra, Indonesia. We find widespread biodiversity-profit trade-offs resulting from land-use transitions from forest and agroforestry systems to rubber and oil palm monocultures, for 26,894 aboveground and belowground species and whole-ecosystem multidiversity. Despite variation between ecosystem functions, profit gains come at the expense of ecosystem multifunctionality, indicating far-reaching ecosystem deterioration. We identify landscape compositions that can mitigate trade-offs under optimal land-use allocation but also show that intensive monocultures always lead to higher profits. These findings suggest that, to reduce losses in biodiversity and ecosystem functioning, changes in economic incentive structures through well-designed policies are urgently needed.
Project description:Unicellular flagellated protists are a key element in aquatic microbial food webs. They all use flagella to swim and to generate feeding currents to encounter prey and enhance nutrient uptake. At the same time, the beating flagella create flow disturbances that attract flow-sensing predators. Protists have highly diverse flagellar arrangements in terms of number of flagella and their position, beat pattern, and kinematics, but it is unclear how the various arrangements optimize the fundamental trade-off between resource acquisition and predation risk. Here we describe the near-cell flow fields produced by 15 species and demonstrate consistent relationships between flagellar arrangement and swimming speed and between flagellar arrangement and flow architecture, and a trade-off between resource acquisition and predation risk. The flow fields fall in categories that are qualitatively described by simple point force models that include the drag force of the moving cell body and the propulsive forces of the flagella. The trade-off between resource acquisition and predation risk varies characteristically between flow architectures: Flagellates with multiple flagella have higher predation risk relative to their clearance rate compared to species with only one active flagellum, with the exception of the highly successful dinoflagellates that have simultaneously achieved high clearance rates and stealth behavior due to a unique flagellar arrangement. Microbial communities are shaped by trade-offs and environmental constraints, and a mechanistic explanation of foraging trade-offs is a vital part of understanding the eukaryotic communities that form the basis of pelagic food webs.
Project description:Learning is changed behavior following experience, and ubiquitous in animals including plant-inhabiting predatory mites (Phytoseiidae). Learning has many benefits but also incurs costs, which are only poorly understood. Here, we addressed learning, especially its costs, in the generalist predatory mite Amblyseius swirskii, a biocontrol agent of several herbivores, which can also survive on pollen. The goals of our research were (1) to scrutinize if A. swirskii is able to learn during early life in foraging contexts and, if so, (2) to determine the costs of early learning. In the experiments, we used one difficult-to-grasp prey, i.e., thrips, and one easy-to-grasp prey, i.e., spider mites. Our experiments show that A. swirskii is able to learn during early life. Adult predators attacked prey experienced early in life (i.e., matching prey) more quickly than they attacked unknown (i.e., non-matching) prey. Furthermore, we observed both fitness benefits and operating (physiological) costs of early learning. Predators receiving the matching prey produced the most eggs, whereas predators receiving the non-matching prey produced the least. Thrips-experienced predators needed the longest for juvenile development. Our findings may be used to enhance A. swirskii's efficacy in biological control, by priming young predators on a specific prey early in life.
Project description:Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them.
Project description:During ontogeny, the increase in body size forces species to make trade-offs between their food requirements, the conditions necessary for growth and reproduction as well as the avoidance of predators. Ontogenetic changes are leading species to seek out habitats and food resources that meet their needs. To this end, ontogenetic changes in nocturnal habitat (vertical use of the water column) and in the type of food resources (based on stable isotopes of nitrogen) were investigated in 12 species of deep pelagic fish from the Bay of Biscay in the Northeast Atlantic. Our results revealed the existence of major differences in the ontogenetic strategies employed by deep pelagic fishes. Some species showed ontogenetic changes in both vertical habitat use and food resources (e.g. Jewel lanternfish (Lampanyctus crocodilus) and Atlantic soft pout (Melanostigma atlanticum)). In contrast, other species showed no ontogenetic change (e.g. Koefoed's searsid (Searsia koefoedi) and Lancet fish (Notoscopelus kroyeri)). Some species only changed food resources (e.g. Spotted lanternfish (Myctophum punctatum), Spotted barracudina (Arctozenus risso) and Stout sawpalate (Serrivomer beanii)), while others seemed to be influenced more by depth than by trophic features (e.g. Bluntsnout smooth-head (Xenodermichthys copei) and Olfer's Hatchetfish (Argyropelecus olfersii)). These results suggest that to meet their increasing energy requirements during ontogeny, some species have adopted a strategy of shifting their food resources (larger prey or prey with a higher trophic level), while others seemed to maintain their food resources but are most likely increasing the quantity of prey ingested. As fish species can have different functional roles during their development within ecosystems, characterising ontogenetic changes in mesopelagic fish species is a crucial step to be considered in future research aimed at understanding and modelling the complexity of deep-pelagic food webs.
Project description:The accelerating expansion of human populations and associated economic activity across the globe have made maintaining large, intact natural areas increasingly challenging. The difficulty of preserving large intact landscapes in the presence of growing human populations has led to a growing emphasis on landscape approaches to biodiversity conservation with a complementary strategy focused on improving conservation in human-modified landscapes. This, in turn, is leading to intense debate about the effectiveness of biodiversity conservation in human-modified landscapes and approaches to better support biodiversity in those landscapes. Here, we compared butterfly abundance, alpha richness, and beta diversity in human-modified landscapes (urban, sugarcane) and natural, forested areas to assess the conservation value of human-modified landscapes within the Wet Tropics bioregion of Australia. We used fruit-baited traps to sample butterflies and analyzed abundance and species richness in respective land uses over a one-year period. We also evaluated turnover and spatial variance components of beta diversity to determine the extent of change in temporal and spatial variation in community composition. Forests supported the largest numbers of butterflies, but were lowest in each, alpha species richness, beta turnover, and the spatial beta diversity. Sugarcane supported higher species richness, demonstrating the potential for conservation at local scales in human-modified landscapes. In contrast, beta diversity was highest in urban areas, likely driven by spatial and temporal variation in plant composition within the urban landscapes. Thus, while improving conservation on human-modified landscapes may improve local alpha richness, conserving variation in natural vegetation is critical for maintaining high beta diversity.
Project description:Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or "recognize patterns" in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is "staying in patches". In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape.
Project description:Herbivores consider the variation of forage qualities (nutritional content and digestibility) as well as quantities (biomass) when foraging. Such selection patterns may change based on the scale of foraging, particularly in the case of ungulates that forage at many scales.To test selection for quality and quantity in free-ranging herbivores across scales, however, we must first develop landscape-wide quantitative estimates of both forage quantity and quality. Stoichiometric distribution models (StDMs) bring opportunity to address this because they predict the elemental measures and stoichiometry of resources at landscape extents.Here, we use StDMs to predict elemental measures of understory white birch quality (% nitrogen) and quantity (g carbon/m2) across two boreal landscapes. We analyzed global positioning system (GPS) collared moose (n = 14) selection for forage quantity and quality at the landscape, home range, and patch extents using both individual and pooled resource selection analyses. We predicted that as the scale of resource selection decreased from the landscape to the patch, selection for white birch quantity would decrease and selection for quality would increase.Counter to our prediction, pooled-models showed selection for our estimates of quantity and quality to be neutral with low explanatory power and no scalar trends. At the individual-level, however, we found evidence for quality and quantity trade-offs, most notably at the home-range scale where resource selection models explain the largest amount of variation in selection. Furthermore, individuals did not follow the same trade-off tactic, with some preferring forage quantity over quality and vice versa.Such individual trade-offs show that moose may be flexible in attaining a limiting nutrient. Our findings suggest that herbivores may respond to forage elemental compositions and quantities, giving tools like StDMs merit toward animal ecology applications. The integration of StDMs and animal movement data represents a promising avenue for progress in the field of zoogeochemistry.