Project description:Perineuronal nets (PNNs) are specialised extracellular matrix structures which preferentially enwrap fast-spiking (FS) parvalbumin interneurons and have diverse roles in the cortex. PNN maturation coincides with closure of the critical period of cortical plasticity. We have previously demonstrated that BDNF accelerates interneuron development in a c-Jun-NH2-terminal kinase (JNK)-dependent manner, which may involve upstream thousand-and-one amino acid kinase 2 (TAOK2). Chondroitinase-ABC (ChABC) enzymatic digestion of PNNs reportedly reactivates 'juvenile-like' plasticity in the adult CNS. However, the mechanisms involved are unclear. We show that ChABC produces an immature molecular phenotype in cultured cortical neurons, corresponding to the phenotype prior to critical period closure. ChABC produced different patterns of PNN-related, GABAergic and immediate early (IE) gene expression than well-characterised modulators of mature plasticity and network activity (GABAA-R antagonist, bicuculline, and sodium-channel blocker, tetrodotoxin (TTX)). ChABC downregulated JNK activity, while this was upregulated by bicuculline. Bicuculline, but not ChABC, upregulated Bdnf expression and ERK activity. Furthermore, we found that BDNF upregulation of semaphorin-3A and IE genes was TAOK mediated. Our data suggest that ChABC heightens structural flexibility and network disinhibition, potentially contributing to 'juvenile-like' plasticity. The molecular phenotype appears to be distinct from heightened mature synaptic plasticity and could relate to JNK signalling. Finally, we highlight that BDNF regulation of plasticity and PNNs involves TAOK signalling.
Project description:AimsTo investigate whether pleiotrophin (PTN) overexpression influences ethanol consumption during adolescence and its effects on glial responses, neurogenesis, and perineuronal nets (PNNs) in the mouse hippocampus.MethodsMale and female adolescent transgenic mice with elevated PTN levels (Ptn-Tg) and controls underwent an intermittent access to ethanol (IAE) 2-bottle choice protocol. Ethanol consumption, PTN levels, neurogenesis, and glial responses were measured in the hippocampus. Immunohistochemistry was used to assess changes in new neurons, microglial and astrocyte populations, and PNNs.ResultsPtn-Tg mice consumed significantly less ethanol compared to controls, irrespective of sex. Chronic alcohol exposure reduced PTN levels in the hippocampus. PTN overexpression decreased the number of new neurons in the dentate gyrus (DG) and prevented ethanol-induced microglial activation. Ptn-Tg mice had significantly more astrocytes and fewer PNNs, with a higher percentage of parvalbumin (PV) positive cells surrounded by PNNs under basal conditions. However, ethanol drastically reduced the number of PV+ cells in the DG of Ptn-Tg mice, despite the presence of PNNs.ConclusionPTN overexpression reduces adolescent ethanol consumption and influences ethanol-induced effects on hippocampal neurogenesis, glial responses, and PNN remodeling. These findings underscore the importance of PTN in modulating alcohol-induced neurotoxicity.
Project description:Early life stress negatively impacts brain development and affects structure and function of parvalbumin immunopositive (PV+) inhibitory neurons. Main regulators of PV+ interneurons activity and plasticity are perineuronal nets (PNNs), an extracellular matrix formation that enwraps PV+ interneurons mainly in the neocortex and hippocampus. To experimentally address the impact of early life stress on the PNNs and PV+ interneurons in the medial prefrontal cortex and dorsal hippocampus in rats, we employed a 24 h maternal deprivation protocol. We show that maternal deprivation in the medial prefrontal cortex of adult rats caused a decrease in density of overall PNNs and PNNs that enwrap PV+ interneurons in the rostral cingulate cortex. Furthermore, a staining intensity decrease of overall PNNs and PNN+/PV+ cells was found in the prelimbic cortex. Finally, a decrease in both intensity and density of overall PNNs and PNNs surrounding PV+ cells was observed in the infralimbic cortex, together with increase in the intensity of VGAT inhibitory puncta. Surprisingly, maternal deprivation did not cause any changes in the density of PV+ interneurons in the mPFC, neither had it affected PNNs and PV+ interneurons in the hippocampus. Taken together, our findings indicate that PNNs, specifically the ones enwrapping PV+ interneurons in the medial prefrontal cortex, are affected by early life stress.
Project description:ObjectivePerineuronal nets (PNN) are specialized extracellular matrix (ECM) components of the central nervous system, frequently accumulating at the surface of inhibitory GABAergic interneurons. While an altered distribution of PNN has been observed in neurological disorders including Alzheimer's disease, schizophrenia and epilepsy, their anatomical distribution also changes during physiological brain maturation and aging. Such an age-dependent shift was experimentally associated also with hippocampal engram formation during brain maturation. Our aim was to histopathologically assess PNN in the hippocampus of adult and pediatric patients with temporal lobe epilepsy (TLE) compared to age-matched post-mortem control subjects and to compare PNN-related changes with memory impairment observed in our patient cohort.MethodsSixty-six formalin-fixed and paraffin-embedded tissue specimens of the human hippocampus were retrieved from the European Epilepsy Brain Bank. Twenty-nine patients had histopathologically confirmed hippocampal sclerosis (HS), and eleven patients suffered from TLE without HS. PNN were immunohistochemically visualized using an antibody directed against aggrecan and manually counted from hippocampus subfields and the subiculum.ResultsPNN density increased with age in both human controls and TLE patients. However, their density was significantly higher in all HS patients compared to age-matched controls. Intriguingly, TLE patients presented presurgically with better memory when their hippocampal PNN density was higher (p < 0.05).SignificanceOur results were compatible with age-dependent ECM specialization in the human hippocampus and its precocious aging in the epileptic condition. These observations confirm recent experimental animal models and also support the notion that PNN play a role in memory formation in the human brain.Plain language summary"Perineuronal nets" (PNN) are a specialized compartment of the extracellular matrix (ECM), especially surrounding highly active neurons of the mammalian brain. There is evidence that PNN play a role in memory formation, brain maturation, and in some pathologies like Alzheimer's disease, schizophrenia or epilepsy. In this study, we investigated the role of PNN in patients suffering from drug-resistant focal epilepsy compared to controls. We found that with increasing age, more neurons are surrounded by PNN. Similarly, all epilepsy patients but especially patients with better memory performance also had more PNN. This study raises further interest in studying ECM molecules in the human brain under physiological and pathophysiological conditions.
Project description:BackgroundIn humans, accumulated adverse experiences during childhood increase the risk of anxiety disorders and attention-deficit/hyperactivity disorder. In rodents, the ventral hippocampus (vHIP) is associated with anxiety regulation, and lesions in this region alter both anxiety-like behavior and activity levels. Neuronal oscillations in the vHIP of the theta frequency range (4-12 Hz) have been implicated in anxious states and derive in part from the activity of inhibitory interneurons in the hippocampus, some of which are enwrapped with perineuronal nets (PNNs), extracellular matrix structures known to regulate plasticity. We sought to investigate the associations among early life stress-induced anxiety and hyperactivity with vHIP neuronal oscillations, inhibitory interneurons, and PNNs in mice.MethodsWe used repeated maternal separation with early weaning (MSEW) to model accumulated early life adversity in mouse offspring and studied the underlying cellular and electrophysiological changes in the vHIP that are associated with excessive anxiety and hyperactivity.ResultsWe found increased anxiety-like behavior and activity levels in MSEW adult males, along with increased theta power and enhanced theta-gamma coupling in the vHIP. MSEW mice showed reduced intensity of parvalbumin as well as increased PNN intensity around parvalbumin-positive interneurons in the vHIP. We further observed that MSEW increased orthodenticle homeobox protein 2, a transcription factor promoting PNN development, in the choroid plexus, where it is produced, as well as in parvalbumin-positive interneurons, where it is sequestered.ConclusionsThese findings raise the possibility of causal links among parvalbumin-positive interneurons, PNNs, orthodenticle homeobox protein 2, and MSEW-induced anxiety and hyperactivity.
Project description:DEPDC5, the key gene within the mechanistic target of rapamycin (mTOR) pathway, is one of the most common causative genes in patients with epilepsy and malformation of cortical development (MCD). Although somatic mutations in the dorsal cortical progenitors generate the malformed cortex, its pathogenesis of hyperexcitability is complex and remains unclear. We specifically deleted Depdc5 in the mouse forebrain dorsal progenitors to model DEPDC5-related epilepsy and investigated whether and how parvalbumin interneurons were non-cell autonomously affected in the malformed cortex. We showed that long before seizures, coincident with microglia inflammation, proteolytic enzymes degraded perineuronal nets (PNNs) in the malformed cortex, resulting in parvalbumin (PV+) interneuron loss and presynaptic inhibition impairment. Our studies, therefore, uncovered the hitherto unknown role of PNN in mTOR-related MCD, providing a new framework for mechanistic-based therapeutic development.
Project description:The perineuronal net (PNN) region of the brain's extracellular matrix (ECM) surrounds the neural networks within the brain tissue. The PNN is a protective net-like structure regulating neuronal activity such as neurotransmission, charge balance, and action potential generation. Shock-induced damage of this essential component may lead to neuronal cell death and neurodegenerations. The shock generated during a vehicle accident, fall, or improvised device explosion may produce sufficient energy to damage the structure of the PNN. The goal is to investigate the mechanics of the PNN in reaction to shock loading and to understand the mechanical properties of different PNN components such as glycan, GAG, and protein. In this study, we evaluated the mechanical strength of PNN molecules and the interfacial strength between the PNN components. Afterward, we assessed the PNN molecules' damage efficiency under various conditions such as shock speed, preexisting bubble, and boundary conditions. The secondary structure altercation of the protein molecules of the PNN was analyzed to evaluate damage intensity under varying shock speeds. At a higher shock speed, damage intensity is more elevated, and hyaluronan (glycan molecule) is most likely to break at the rigid junction. The primary structure of the protein molecules is least likely to fail. Instead, the molecules' secondary bonds will be altered. Our study suggests that the number of hydrogen bonds during the shock wave propagation is reduced, which leads to the change in protein conformations and damage within the PNN structure. As such, we found a direct connection between shock wave intensity and PNN damage.
Project description:Grid cells are part of a widespread network which supports navigation and spatial memory. Stable grid patterns appear late in development, in concert with extracellular matrix aggregates termed perineuronal nets (PNNs) that condense around inhibitory neurons. It has been suggested that PNNs stabilize synaptic connections and long-term memories, but their role in the grid cell network remains elusive. We show that removal of PNNs leads to lower inhibitory spiking activity, and reduces grid cells' ability to create stable representations of a novel environment. Furthermore, in animals with disrupted PNNs, exposure to a novel arena corrupted the spatiotemporal relationships within grid cell modules, and the stored representations of a familiar arena. Finally, we show that PNN removal in entorhinal cortex distorted spatial representations in downstream hippocampal neurons. Together this work suggests that PNNs provide a key stabilizing element for the grid cell network.
Project description:The perineuronal nets (PNNs) are sugar coated protein structures that encapsulate certain neurons in the brain, such as parvalbumin positive (PV) inhibitory neurons. As PNNs are theorized to act as a barrier to ion transport, they may effectively increase the membrane charge-separation distance, thereby affecting the membrane capacitance. Tewari et al. (2018) found that degradation of PNNs induced a 25%-50% increase in membrane capacitance [Formula: see text] and a reduction in the firing rates of PV-cells. In the current work, we explore how changes in [Formula: see text] affects the firing rate in a selection of computational neuron models, ranging in complexity from a single compartment Hodgkin-Huxley model to morphologically detailed PV-neuron models. In all models, an increased [Formula: see text] lead to reduced firing, but the experimentally reported increase in [Formula: see text] was not alone sufficient to explain the experimentally reported reduction in firing rate. We therefore hypothesized that PNN degradation in the experiments affected not only [Formula: see text], but also ionic reversal potentials and ion channel conductances. In simulations, we explored how various model parameters affected the firing rate of the model neurons, and identified which parameter variations in addition to [Formula: see text] that are most likely candidates for explaining the experimentally reported reduction in firing rate.
Project description:Perineuronal nets (PNNs) are aggregations of extracellular matrix associated with specific neuronal populations in the central nervous system, suggested to play key roles in neural development, synaptogenesis and experience-dependent synaptic plasticity. Pregnancy and lactation are characterized by a dramatic increase in neuroplasticity. However, dynamic changes in the extracellular matrix associated with maternal circuits have been mostly overlooked. We analyzed the structure of PNNs in an essential nucleus of the maternal circuit, the medial preoptic area (mPOA), during the reproductive cycle of rats, using the Wisteria floribunda (WFA) label. PNNs associated to neurons in the mPOA start to assemble halfway through gestation and become highly organized prior to parturition, fading through the postpartum period. This high expression of PNNs during pregnancy appears to be mediated by the influence of estrogen, progesterone and prolactin, since a hormonal simulated-gestation treatment induced the expression of PNNs in ovariectomized females. We found that PNNs associated neurons in the mPOA express estrogen receptor α and progesterone receptors, supporting a putative role of reproductive hormones in the signaling mechanisms that trigger the assembly of PNNs in the mPOA. This is the first report of PNNs presence and remodeling in mPOA during adulthood induced by physiological variables.