Project description:BackgroundAlthough many strain typing methods exist for pathogenic Escherichia coli, most have drawbacks in terms of resolving power, interpretability, or scalability. For this reason, multilocus sequence typing (MLST) is an appealing alternative especially when applied to the typing of temporal and spatially separated isolates. This method relies on an unambiguous DNA sequence analysis of nucleotide polymorphisms in housekeeping genes and has shown a high degree of intraspecies discriminatory power for bacterial and fungal pathogens.ResultsHere we used the MLST method to study the genetic diversity among E. coli O157 isolates collected from humans from two different locations of USA over a period of several years (2000-2008). MLST analysis of 33 E. coli O157 patient isolates using the eBurst algorithm distinguished 26 different sequence types (STs), which were clustered into two clonal groups and 11 singletons. The predominant ST was ST2, which consisted of 5 isolates (14.28%) followed by ST1 (11.42%). All the isolates under clonal group I exhibited a virtually similar virulence profile except for two strains, which tested negative for the presence of stx genes. The isolates that were assigned to clonal group II in addition to the 11 singletons were found to be phylogenetically distant from clonal group I. Furthermore, we observed a positive correlation between the virulence profile of the isolates and their clonal origin.ConclusionsOur data suggests the presence of genetic diversity among E. coli O157 isolates from humans shows no measurable correlation to the geographic origin of the isolates.
Project description:Probe hybridization array typing (PHAT) is a previously validated, high-throughput, highly discriminatory binary typing method based on the presence or absence of genetic material. To increase the utility of PHAT, we identified a refined PHAT probe set using 24 known and potential Escherichia coli virulence genes, by which groups similar to multilocus sequence typing (MLST) clonal groups (CGs) could be determined. We PHAT typed 1,132 E. coli isolates, representing at least 62 MLST CGs and diverse disease states, using a "library-on-a-slide" microarray format. Using 24 PHAT probes, all 62 MLST CGs in the representative E. coli collection were distinguished. For major CGs, PHAT correctly classified all sequence types within CG7 and CG17 but misclassified between one and four sequence types for CG13, CG14, CG23, CG38, and CG58, giving an overall sensitivity and specificity of 80.4 and 98.7%, respectively. After application of the PHAT classification to the whole collection, MLST validation of the PHAT probe classification resulted in sensitivities from 0.0 to 100.0% and specificities from 75.0 to 100.0% for individual CGs and an overall sensitivity and specificity of 64.7 and 88.3%, respectively. The refined PHAT probe set is capable of classifying isolates into groups in a manner similar to major clonal complexes of MLST, indicating coevolution between the chromosomal background and the flexible gene pool. Further refinement is needed to distinguish between closely related groups. For analysis of large bacterial collections, PHAT is a relatively time- and cost-efficient method and is ideal for a first level of analysis.
Project description:Multilocus sequence typing of 31 stx-carrying Escherichia coli O26:H11 strains isolated in Canada between 1999 and 2003 revealed a high degree of genetic relatedness at 10 loci, suggesting either that this is a clonal serotype (similar to O157:H7) or that additional genetic loci need to be examined.
Project description:Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains are emerging pathogens. Molecular typing of ESBL-producing E. coli is useful for surveillance purposes, to monitor outbreaks and track nosocomial spread. Although pulsed-field gel electrophoresis (PFGE) is the current "gold standard" for bacterial molecular typing, multilocus sequence typing (MLST) may offer advantages. Forty ESBL-producing E. coli isolates were selected at random from a cohort of intensive care unit patients who had active surveillance perirectal cultures done. PFGE identified 19 unique PFGE types (PT) among the 40 isolates; MLST identified 22 unique sequence types. MLST had greater discriminatory ability than PFGE for ESBL-producing E. coli. Simpson's indices of diversity for PFGE and MLST were 0.895 and 0.956, respectively. There were five clonal complexes (CCs) (isolates with differences of no more than two loci) that each contained multiple PT, but each PT was found in only one CC, indicating genetic consistency within a CC. MLST has clear utility in studies of ESBL-producing E. coli, based on a greater discriminatory ability and reproducibility than PFGE and the ability to a priori define genetically related bacterial strains.
Project description:Effective surveillance and management of pathogenic Escherichia coli relies on robust and reproducible typing methods such as multilocus sequence typing (MLST). Typing of E. coli by MLST enables tracking of pathogenic clones that are known to carry virulence factors or spread resistance, such as the globally-prevalent ST131 lineage. Standard MLST for E. coli requires sequencing of seven alleles, or a whole genome, and can take several days. Here, we have developed and validated a nucleic-acid-based MALDI-TOF mass spectrometry (MS) method for MLST as a rapid alternative to sequencing that requires minimal operator expertise. Identification of alleles was 99.6% concordant with sequencing. We employed MLST by MALDI-TOF MS to investigate diversity among 62 E. coli isolates from Sydney, Australia, carrying a blaCMY-2-like gene on an IncI1 plasmid to determine whether any dominant clonal lineages are associated with the spread of this globally-disseminated resistance gene. Thirty-four known sequence types were identified, including lineages associated with human disease, animal and environmental sources. This suggests that the dissemination of blaCMY-2-like-genes is more complex than the simple spread of successful pathogenic clones. E. coli MLST by MALDI-TOF MS, employed here for the first time, can be utilised as an automated tool for large-scale population analyses or for targeted screening for known high-risk clones in a diagnostic setting.
Project description:In total, 50 Escherichia coli bloodstream isolates from the clinical laboratory and 12 E. coli isolates referred for pulsed-field gel electrophoresis (PFGE) were sequenced, assessed for clonality using core genome multilocus sequence typing (cgMLST), and evaluated for genomic susceptibility predictions using ARESdb. Results of sequence typing using whole-genome sequencing (WGS)-based MLST and sequence type (ST)-specific PCR were identical. Overall categorical agreement between genotypic (ARESdb) and phenotypic susceptibility testing for 62 isolates and 11 antimicrobial agents was 91%. Among the referred isolates, high major error rates were found for ceftazidime, cefepime, and piperacillin-tazobactam.
Project description:A multilocus sequence typing (MLST) scheme was developed for Klebsiella pneumoniae. Sequences of seven housekeeping genes were obtained for 67 K. pneumoniae strains, including 19 ceftazidime- and ciprofloxacin-resistant isolates. Forty distinct allelic profiles were identified. MLST data were validated against ribotyping and showed high (96%) discriminatory power. The MLST approach provides unambiguous data useful for the epidemiology of K. pneumoniae isolates.
Project description:Escherichia coli O157:H7, an important food-borne pathogen, has become a major public health concern worldwide. The aim of this study was to investigate the molecular epidemiologic feature of E. coli O157:H7 strains in China. 105 E. coli O157:H7 isolates were collected from various hosts and places over 9 years. A multilocus sequence typing scheme (MLST) was applied for bacteria genotyping and polymerase chain reaction (PCR) was used for virulence factor identification. Seven new MLST sequence types (STs), namely ST836, ST837, ST838, ST839, ST840, ST841, and ST842 were identified, which grouped into two lineages. Phylogenetic analysis suggested that the most two frequent STs in China, ST837 and ST836, may be the derivatives of E. coli O157:H7 Sakai or E. coli O157:H7 EDL933. Geographical diversity and host variety of E. coli O157:H7 were observed in China. In addition, the different distribution of tccp was detected. The data presented herein provide new insights into the molecular epidemiologic feature of E. coli O157:H7, and aid in the investigation of the transmission regularity and evolutionary mechanism of E. coli O157:H7.
Project description:The purpose of this work was to evaluate the evolutionary history of Campylobacter coli isolates derived from multiple host sources and to use microarray comparative genomic hybridization to assess whether there are particular genes comprising the dispensable portion of the genome that are more commonly associated with certain host species. Genotyping and ClonalFrame analyses of an expanded 16-gene multilocus sequence typing (MLST) data set involving 85 isolates from 4 different hosts species tentatively supported the development of C. coli host-preferred groups and suggested that recombination has played various roles in their diversification; however, geography could not be excluded as a contributing factor underlying the history of some of the groups. Population genetic analyses of the C. coli pubMLST database by use of STRUCTURE suggested that isolates from swine form a relatively homogeneous genetic group, that chicken and human isolates show considerable genetic overlap, that isolates from ducks and wild birds have similarity with environmental water samples and that turkey isolates have a connection with human infection similar to that observed for chickens. Analysis of molecular variance (AMOVA) was performed on these same data and suggested that host species was a significant factor in explaining genetic variation and that macrogeography (North America, Europe, and the United Kingdom) was not. The microarray comparative genomic hybridization data suggested that there were combinations of genes more commonly associated with isolates derived from particular hosts and, combined with the results on evolutionary history, suggest that this is due to a combination of common ancestry in some cases and lateral gene transfer in others.
Project description:A total of 258 bovine-associated Staphylococcus aureus isolates from the United States, Chile, and the United Kingdom, plus the reference isolate S. aureus Newbould 305 (NCIMB 702892), were analyzed by multilocus sequence typing (MLST). A collection of previously characterized United Kingdom isolates were also included in the analysis. The results demonstrated that MLST is suitable for the differentiation of bovine S. aureus isolates from various sites (milk, teat skin, milking machine unit liners, hands, and bedding) and countries. The theory of the host specificity of S. aureus is supported by the detection of a previously undescribed clonal complex that comprised 87.4% of the isolates studied, with representatives from all geographic locations investigated. This suggests that a single clonal group has achieved a widespread distribution and is responsible for the majority of infections. Some sequence types (STs; ST25, ST115, ST124, and ST126) demonstrated site specificity, as they were significantly (P < 0.05) associated with milk or teat skin.