Unknown

Dataset Information

0

AI hybrid survival assessment for advanced heart failure patients with renal dysfunction.


ABSTRACT: Renal dysfunction (RD) often characterizes the worse course of patients with advanced heart failure (AHF). Many prognosis assessments are hindered by researcher biases, redundant predictors, and lack of clinical applicability. In this study, we enroll 1736 AHF/RD patients, including data from Henan Province Clinical Research Center for Cardiovascular Diseases (which encompasses 11 hospital subcenters), and Beth Israel Deaconess Medical Center. We developed an AI hybrid modeling framework, assembling 12 learners with different feature selection paradigms to expand modeling schemes. The optimized strategy is identified from 132 potential schemes to establish an explainable survival assessment system: AIHFLevel. The conditional inference survival tree determines a probability threshold for prognostic stratification. The evaluation confirmed the system's robustness in discrimination, calibration, generalization, and clinical implications. AIHFLevel outperforms existing models, clinical features, and biomarkers. We also launch an open and user-friendly website www.hf-ai-survival.com , empowering healthcare professionals with enhanced tools for continuous risk monitoring and precise risk profiling.

SUBMITTER: Zhang G 

PROVIDER: S-EPMC11310499 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

AI hybrid survival assessment for advanced heart failure patients with renal dysfunction.

Zhang Ge G   Wang Zeyu Z   Tong Zhuang Z   Qin Zhen Z   Su Chang C   Li Demin D   Xu Shuai S   Li Kaixiang K   Zhou Zhaokai Z   Xu Yudi Y   Zhang Shiqian S   Wu Ruhao R   Li Teng T   Zheng Youyang Y   Zhang Jinying J   Cheng Ke K   Tang Junnan J  

Nature communications 20240808 1


Renal dysfunction (RD) often characterizes the worse course of patients with advanced heart failure (AHF). Many prognosis assessments are hindered by researcher biases, redundant predictors, and lack of clinical applicability. In this study, we enroll 1736 AHF/RD patients, including data from Henan Province Clinical Research Center for Cardiovascular Diseases (which encompasses 11 hospital subcenters), and Beth Israel Deaconess Medical Center. We developed an AI hybrid modeling framework, assemb  ...[more]

Similar Datasets

2025-02-11 | PXD043768 | Pride
| S-EPMC3884639 | biostudies-literature
| S-EPMC9535020 | biostudies-literature
| S-EPMC7108664 | biostudies-literature
| S-EPMC6501813 | biostudies-literature
| S-EPMC7358121 | biostudies-literature
| S-EPMC2424167 | biostudies-literature
| S-EPMC4855293 | biostudies-literature
| S-EPMC11785720 | biostudies-literature
| S-EPMC4292792 | biostudies-literature