Ontology highlight
ABSTRACT: Background
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with the highest morbidity and mortality in the world. Early diagnosis can significantly improve the prognosis of patients. Transfer RNA (tRNA)-derived fragments (tRFs) have been found to have a crucial function in the pathophysiology of cancers. However, the role of tRFs/tRNA halves (tiRNAs) in NSCLC is yet unknown. The present study aimed to investigate unique expression profiles of tRFs/tiRNAs in NSCLC and search novel biomarkers for the diagnosis.Methods
RNA-sequencing was utilized for determining differently expressed tRFs/tiRNAs in serum in NSCLC and healthy controls. Stem-loop quantitative polymerase chain reaction (PCR) was used to confirm the selected tRFs/tiRNAs expressions. Their possible roles in NSCLC were predicted using bioinformatic research.Results
Eleven up-regulated tRFs/tiRNAs and 18 down-regulated tRFs/tiRNAs were determined. Levels of tRF-31-87R8WP9N1EWJ0 and tRF-31-79MP9P9NH57SD were significantly higher in NSCLC serum samples than those of healthy controls; the receiver operating characteristic (ROC) curve suggested that they could serve as new diagnostic biomarkers. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis hinted that tRF-31-87R8WP9N1EWJ0 and tRF-31-79MP9P9NH57SD might influence the development and manifestation of NSCLC.Conclusions
In NSCLC patients' serum, the tRFs/tiRNAs were abnormally regulated and that tRF-31-87R8WP9N1EWJ0 and tRF-31-79MP9P9NH57SD might be the potential biological markers for NSCLC.
SUBMITTER: Song Y
PROVIDER: S-EPMC11322679 | biostudies-literature | 2024 Jul
REPOSITORIES: biostudies-literature
Translational cancer research 20240711 7
<h4>Background</h4>Non-small cell lung cancer (NSCLC) is one of the malignant tumors with the highest morbidity and mortality in the world. Early diagnosis can significantly improve the prognosis of patients. Transfer RNA (tRNA)-derived fragments (tRFs) have been found to have a crucial function in the pathophysiology of cancers. However, the role of tRFs/tRNA halves (tiRNAs) in NSCLC is yet unknown. The present study aimed to investigate unique expression profiles of tRFs/tiRNAs in NSCLC and se ...[more]